@@ -681,26 +681,26 @@ def get_median(x):
681
681
# there's a non-empty array to apply over otherwise numpy raises
682
682
if notempty :
683
683
if not skipna :
684
- return _wrap_results (
685
- np .apply_along_axis (get_median , axis , values ), dtype
686
- )
684
+ res = np .apply_along_axis (get_median , axis , values )
685
+
686
+ else :
687
+ # fastpath for the skipna case
688
+ with warnings .catch_warnings ():
689
+ # Suppress RuntimeWarning about All-NaN slice
690
+ warnings .filterwarnings ("ignore" , "All-NaN slice encountered" )
691
+ res = np .nanmedian (values , axis )
687
692
688
- # fastpath for the skipna case
689
- with warnings .catch_warnings ():
690
- # Suppress RuntimeWarning about All-NaN slice
691
- warnings .filterwarnings ("ignore" , "All-NaN slice encountered" )
692
- res = np .nanmedian (values , axis )
693
- return _wrap_results (res , dtype )
694
-
695
- # must return the correct shape, but median is not defined for the
696
- # empty set so return nans of shape "everything but the passed axis"
697
- # since "axis" is where the reduction would occur if we had a nonempty
698
- # array
699
- ret = get_empty_reduction_result (values .shape , axis , np .float_ , np .nan )
700
- return _wrap_results (ret , dtype )
701
-
702
- # otherwise return a scalar value
703
- return _wrap_results (get_median (values ) if notempty else np .nan , dtype )
693
+ else :
694
+ # must return the correct shape, but median is not defined for the
695
+ # empty set so return nans of shape "everything but the passed axis"
696
+ # since "axis" is where the reduction would occur if we had a nonempty
697
+ # array
698
+ res = get_empty_reduction_result (values .shape , axis , np .float_ , np .nan )
699
+
700
+ else :
701
+ # otherwise return a scalar value
702
+ res = get_median (values ) if notempty else np .nan
703
+ return _wrap_results (res , dtype )
704
704
705
705
706
706
def get_empty_reduction_result (
0 commit comments