@@ -464,7 +464,10 @@ which we illustrate:
464
464
{" A" : [1.0 , np.nan, 3.0 , 5.0 , np.nan], " B" : [np.nan, 2.0 , 3.0 , np.nan, 6.0 ]}
465
465
)
466
466
df2 = pd.DataFrame(
467
- {" A" : [5.0 , 2.0 , 4.0 , np.nan, 3.0 , 7.0 ], " B" : [np.nan, np.nan, 3.0 , 4.0 , 6.0 , 8.0 ]}
467
+ {
468
+ " A" : [5.0 , 2.0 , 4.0 , np.nan, 3.0 , 7.0 ],
469
+ " B" : [np.nan, np.nan, 3.0 , 4.0 , 6.0 , 8.0 ],
470
+ }
468
471
)
469
472
df1
470
473
df2
@@ -712,7 +715,10 @@ Similarly, you can get the most frequently occurring value(s), i.e. the mode, of
712
715
s5 = pd.Series([1 , 1 , 3 , 3 , 3 , 5 , 5 , 7 , 7 , 7 ])
713
716
s5.mode()
714
717
df5 = pd.DataFrame(
715
- {" A" : np.random.randint(0 , 7 , size = 50 ), " B" : np.random.randint(- 10 , 15 , size = 50 )}
718
+ {
719
+ " A" : np.random.randint(0 , 7 , size = 50 ),
720
+ " B" : np.random.randint(- 10 , 15 , size = 50 ),
721
+ }
716
722
)
717
723
df5.mode()
718
724
@@ -1192,7 +1198,9 @@ to :ref:`merging/joining functionality <merging>`:
1192
1198
1193
1199
.. ipython :: python
1194
1200
1195
- s = pd.Series([" six" , " seven" , " six" , " seven" , " six" ], index = [" a" , " b" , " c" , " d" , " e" ])
1201
+ s = pd.Series(
1202
+ [" six" , " seven" , " six" , " seven" , " six" ], index = [" a" , " b" , " c" , " d" , " e" ]
1203
+ )
1196
1204
t = pd.Series({" six" : 6.0 , " seven" : 7.0 })
1197
1205
s
1198
1206
s.map(t)
@@ -1494,7 +1502,9 @@ labels).
1494
1502
1495
1503
df = pd.DataFrame(
1496
1504
{" x" : [1 , 2 , 3 , 4 , 5 , 6 ], " y" : [10 , 20 , 30 , 40 , 50 , 60 ]},
1497
- index = pd.MultiIndex.from_product([[" a" , " b" , " c" ], [1 , 2 ]], names = [" let" , " num" ]),
1505
+ index = pd.MultiIndex.from_product(
1506
+ [[" a" , " b" , " c" ], [1 , 2 ]], names = [" let" , " num" ]
1507
+ ),
1498
1508
)
1499
1509
df
1500
1510
df.rename_axis(index = {" let" : " abc" })
@@ -1803,7 +1813,9 @@ used to sort a pandas object by its index levels.
1803
1813
}
1804
1814
)
1805
1815
1806
- unsorted_df = df.reindex(index = [" a" , " d" , " c" , " b" ], columns = [" three" , " two" , " one" ])
1816
+ unsorted_df = df.reindex(
1817
+ index = [" a" , " d" , " c" , " b" ], columns = [" three" , " two" , " one" ]
1818
+ )
1807
1819
unsorted_df
1808
1820
1809
1821
# DataFrame
@@ -1849,7 +1861,9 @@ to use to determine the sorted order.
1849
1861
1850
1862
.. ipython :: python
1851
1863
1852
- df1 = pd.DataFrame({" one" : [2 , 1 , 1 , 1 ], " two" : [1 , 3 , 2 , 4 ], " three" : [5 , 4 , 3 , 2 ]})
1864
+ df1 = pd.DataFrame(
1865
+ {" one" : [2 , 1 , 1 , 1 ], " two" : [1 , 3 , 2 , 4 ], " three" : [5 , 4 , 3 , 2 ]}
1866
+ )
1853
1867
df1.sort_values(by = " two" )
1854
1868
1855
1869
The ``by `` parameter can take a list of column names, e.g.:
@@ -1994,7 +2008,9 @@ all levels to ``by``.
1994
2008
1995
2009
.. ipython :: python
1996
2010
1997
- df1.columns = pd.MultiIndex.from_tuples([(" a" , " one" ), (" a" , " two" ), (" b" , " three" )])
2011
+ df1.columns = pd.MultiIndex.from_tuples(
2012
+ [(" a" , " one" ), (" a" , " two" ), (" b" , " three" )]
2013
+ )
1998
2014
df1.sort_values(by = (" a" , " two" ))
1999
2015
2000
2016
@@ -2245,7 +2261,11 @@ to the correct type.
2245
2261
import datetime
2246
2262
2247
2263
df = pd.DataFrame(
2248
- [[1 , 2 ], [" a" , " b" ], [datetime.datetime(2016 , 3 , 2 ), datetime.datetime(2016 , 3 , 2 )]]
2264
+ [
2265
+ [1 , 2 ],
2266
+ [" a" , " b" ],
2267
+ [datetime.datetime(2016 , 3 , 2 ), datetime.datetime(2016 , 3 , 2 )],
2268
+ ]
2249
2269
)
2250
2270
df = df.T
2251
2271
df
0 commit comments