@@ -6157,14 +6157,72 @@ def min(
6157
6157
)
6158
6158
6159
6159
@deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "max" )
6160
- @doc (make_doc ("max" , ndim = 1 ))
6161
6160
def max (
6162
6161
self ,
6163
6162
axis : Axis | None = 0 ,
6164
6163
skipna : bool = True ,
6165
6164
numeric_only : bool = False ,
6166
6165
** kwargs ,
6167
6166
):
6167
+ """
6168
+ Return the maximum of the values over the requested axis.
6169
+
6170
+ If you want the *index* of the maximum, use ``idxmax``.
6171
+ This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
6172
+
6173
+ Parameters
6174
+ ----------
6175
+ axis : {index (0)}
6176
+ Axis for the function to be applied on.
6177
+ For `Series` this parameter is unused and defaults to 0.
6178
+
6179
+ For DataFrames, specifying ``axis=None`` will apply the aggregation
6180
+ across both axes.
6181
+
6182
+ .. versionadded:: 2.0.0
6183
+
6184
+ skipna : bool, default True
6185
+ Exclude NA/null values when computing the result.
6186
+ numeric_only : bool, default False
6187
+ Include only float, int, boolean columns.
6188
+ **kwargs
6189
+ Additional keyword arguments to be passed to the function.
6190
+
6191
+ Returns
6192
+ -------
6193
+ scalar or Series (if level specified)
6194
+ The maximum of the values in the Series.
6195
+
6196
+ See Also
6197
+ --------
6198
+ numpy.max : Equivalent numpy function for arrays.
6199
+ Series.min : Return the minimum.
6200
+ Series.max : Return the maximum.
6201
+ Series.idxmin : Return the index of the minimum.
6202
+ Series.idxmax : Return the index of the maximum.
6203
+ DataFrame.min : Return the minimum over the requested axis.
6204
+ DataFrame.max : Return the maximum over the requested axis.
6205
+ DataFrame.idxmin : Return the index of the minimum over the requested axis.
6206
+ DataFrame.idxmax : Return the index of the maximum over the requested axis.
6207
+
6208
+ Examples
6209
+ --------
6210
+ >>> idx = pd.MultiIndex.from_arrays(
6211
+ ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]],
6212
+ ... names=["blooded", "animal"],
6213
+ ... )
6214
+ >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx)
6215
+ >>> s
6216
+ blooded animal
6217
+ warm dog 4
6218
+ falcon 2
6219
+ cold fish 0
6220
+ spider 8
6221
+ Name: legs, dtype: int64
6222
+
6223
+ >>> s.max()
6224
+ 8
6225
+ """
6168
6226
return NDFrame .max (
6169
6227
self , axis = axis , skipna = skipna , numeric_only = numeric_only , ** kwargs
6170
6228
)
0 commit comments