-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathvisualization.rst
1808 lines (1189 loc) · 47.9 KB
/
visualization.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.. _visualization:
{{ header }}
*******************
Chart visualization
*******************
.. note::
The examples below assume that you're using `Jupyter <https://jupyter.org/>`_.
This section demonstrates visualization through charting. For information on
visualization of tabular data please see the section on `Table Visualization <style.ipynb>`_.
We use the standard convention for referencing the matplotlib API:
.. ipython:: python
import matplotlib.pyplot as plt
plt.close("all")
We provide the basics in pandas to easily create decent looking plots.
See `the ecosystem page <https://pandas.pydata.org/community/ecosystem.html>`_ for visualization
libraries that go beyond the basics documented here.
.. note::
All calls to ``np.random`` are seeded with 123456.
.. _visualization.basic:
Basic plotting: ``plot``
------------------------
We will demonstrate the basics, see the :ref:`cookbook<cookbook.plotting>` for
some advanced strategies.
The ``plot`` method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:
.. ipython:: python
np.random.seed(123456)
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = ts.cumsum()
@savefig series_plot_basic.png
ts.plot();
If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>`
to try to format the x-axis nicely as per above.
On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))
df = df.cumsum()
plt.figure();
@savefig frame_plot_basic.png
df.plot();
You can plot one column versus another using the ``x`` and ``y`` keywords in
:meth:`~DataFrame.plot`:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df3 = pd.DataFrame(np.random.randn(1000, 2), columns=["B", "C"]).cumsum()
df3["A"] = pd.Series(list(range(len(df))))
@savefig df_plot_xy.png
df3.plot(x="A", y="B");
.. note::
For more formatting and styling options, see
:ref:`formatting <visualization.formatting>` below.
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.other:
Other plots
-----------
Plotting methods allow for a handful of plot styles other than the
default line plot. These methods can be provided as the ``kind``
keyword argument to :meth:`~DataFrame.plot`, and include:
* :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
* :ref:`'hist' <visualization.hist>` for histogram
* :ref:`'box' <visualization.box>` for boxplot
* :ref:`'kde' <visualization.kde>` or :ref:`'density' <visualization.kde>` for density plots
* :ref:`'area' <visualization.area_plot>` for area plots
* :ref:`'scatter' <visualization.scatter>` for scatter plots
* :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
* :ref:`'pie' <visualization.pie>` for pie plots
For example, a bar plot can be created the following way:
.. ipython:: python
plt.figure();
@savefig bar_plot_ex.png
df.iloc[5].plot(kind="bar");
You can also create these other plots using the methods ``DataFrame.plot.<kind>`` instead of providing the ``kind`` keyword argument. This makes it easier to discover plot methods and the specific arguments they use:
.. ipython::
:verbatim:
In [14]: df = pd.DataFrame()
In [15]: df.plot.<TAB> # noqa: E225, E999
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
In addition to these ``kind`` s, there are the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.
Finally, there are several :ref:`plotting functions <visualization.tools>` in ``pandas.plotting``
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include:
* :ref:`Scatter Matrix <visualization.scatter_matrix>`
* :ref:`Andrews Curves <visualization.andrews_curves>`
* :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
* :ref:`Lag Plot <visualization.lag>`
* :ref:`Autocorrelation Plot <visualization.autocorrelation>`
* :ref:`Bootstrap Plot <visualization.bootstrap>`
* :ref:`RadViz <visualization.radviz>`
Plots may also be adorned with :ref:`errorbars <visualization.errorbars>`
or :ref:`tables <visualization.table>`.
.. _visualization.barplot:
Bar plots
~~~~~~~~~
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python
plt.figure();
@savefig bar_plot_ex.png
df.iloc[5].plot.bar();
plt.axhline(0, color="k");
Calling a DataFrame's :meth:`plot.bar() <DataFrame.plot.bar>` method produces a multiple
bar plot:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])
@savefig bar_plot_multi_ex.png
df2.plot.bar();
To produce a stacked bar plot, pass ``stacked=True``:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig bar_plot_stacked_ex.png
df2.plot.bar(stacked=True);
To get horizontal bar plots, use the ``barh`` method:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig barh_plot_stacked_ex.png
df2.plot.barh(stacked=True);
.. _visualization.hist:
Histograms
~~~~~~~~~~
Histograms can be drawn by using the :meth:`DataFrame.plot.hist` and :meth:`Series.plot.hist` methods.
.. ipython:: python
df4 = pd.DataFrame(
{
"a": np.random.randn(1000) + 1,
"b": np.random.randn(1000),
"c": np.random.randn(1000) - 1,
},
columns=["a", "b", "c"],
)
plt.figure();
@savefig hist_new.png
df4.plot.hist(alpha=0.5);
.. ipython:: python
:suppress:
plt.close("all")
A histogram can be stacked using ``stacked=True``. Bin size can be changed
using the ``bins`` keyword.
.. ipython:: python
plt.figure();
@savefig hist_new_stacked.png
df4.plot.hist(stacked=True, bins=20);
.. ipython:: python
:suppress:
plt.close("all")
You can pass other keywords supported by matplotlib ``hist``. For example,
horizontal and cumulative histograms can be drawn by
``orientation='horizontal'`` and ``cumulative=True``.
.. ipython:: python
plt.figure();
@savefig hist_new_kwargs.png
df4["a"].plot.hist(orientation="horizontal", cumulative=True);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`hist <matplotlib.axes.Axes.hist>` method and the
`matplotlib hist documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html>`__ for more.
The existing interface ``DataFrame.hist`` to plot histogram still can be used.
.. ipython:: python
plt.figure();
@savefig hist_plot_ex.png
df["A"].diff().hist();
.. ipython:: python
:suppress:
plt.close("all")
:meth:`DataFrame.hist` plots the histograms of the columns on multiple
subplots:
.. ipython:: python
plt.figure();
@savefig frame_hist_ex.png
df.diff().hist(color="k", alpha=0.5, bins=50);
The ``by`` keyword can be specified to plot grouped histograms:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
data = pd.Series(np.random.randn(1000))
@savefig grouped_hist.png
data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4));
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
In addition, the ``by`` keyword can also be specified in :meth:`DataFrame.plot.hist`.
.. versionchanged:: 1.4.0
.. ipython:: python
data = pd.DataFrame(
{
"a": np.random.choice(["x", "y", "z"], 1000),
"b": np.random.choice(["e", "f", "g"], 1000),
"c": np.random.randn(1000),
"d": np.random.randn(1000) - 1,
},
)
@savefig grouped_hist_by.png
data.plot.hist(by=["a", "b"], figsize=(10, 5));
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.box:
Box plots
~~~~~~~~~
Boxplot can be drawn calling :meth:`Series.plot.box` and :meth:`DataFrame.plot.box`,
or :meth:`DataFrame.boxplot` to visualize the distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of
a uniform random variable on [0,1).
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
@savefig box_plot_new.png
df.plot.box();
Boxplot can be colorized by passing ``color`` keyword. You can pass a ``dict``
whose keys are ``boxes``, ``whiskers``, ``medians`` and ``caps``.
If some keys are missing in the ``dict``, default colors are used
for the corresponding artists. Also, boxplot has ``sym`` keyword to specify fliers style.
When you pass other type of arguments via ``color`` keyword, it will be directly
passed to matplotlib for all the ``boxes``, ``whiskers``, ``medians`` and ``caps``
colorization.
The colors are applied to every boxes to be drawn. If you want
more complicated colorization, you can get each drawn artists by passing
:ref:`return_type <visualization.box.return>`.
.. ipython:: python
color = {
"boxes": "DarkGreen",
"whiskers": "DarkOrange",
"medians": "DarkBlue",
"caps": "Gray",
}
@savefig box_new_colorize.png
df.plot.box(color=color, sym="r+");
.. ipython:: python
:suppress:
plt.close("all")
Also, you can pass other keywords supported by matplotlib ``boxplot``.
For example, horizontal and custom-positioned boxplot can be drawn by
``vert=False`` and ``positions`` keywords.
.. ipython:: python
@savefig box_new_kwargs.png
df.plot.box(vert=False, positions=[1, 4, 5, 6, 8]);
See the :meth:`boxplot <matplotlib.axes.Axes.boxplot>` method and the
`matplotlib boxplot documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html>`__ for more.
The existing interface ``DataFrame.boxplot`` to plot boxplot still can be used.
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 5))
plt.figure();
@savefig box_plot_ex.png
bp = df.boxplot()
You can create a stratified boxplot using the ``by`` keyword argument to create
groupings. For instance,
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
plt.figure();
@savefig box_plot_ex2.png
bp = df.boxplot(by="X")
You can also pass a subset of columns to plot, as well as group by multiple
columns:
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])
plt.figure();
@savefig box_plot_ex3.png
bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])
.. ipython:: python
:suppress:
plt.close("all")
You could also create groupings with :meth:`DataFrame.plot.box`, for instance:
.. versionchanged:: 1.4.0
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
plt.figure();
@savefig box_plot_ex4.png
bp = df.plot.box(column=["Col1", "Col2"], by="X")
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.box.return:
In ``boxplot``, the return type can be controlled by the ``return_type``, keyword. The valid choices are ``{"axes", "dict", "both", None}``.
Faceting, created by ``DataFrame.boxplot`` with the ``by``
keyword, will affect the output type as well:
================ ======= ==========================
``return_type`` Faceted Output type
================ ======= ==========================
``None`` No axes
``None`` Yes 2-D ndarray of axes
``'axes'`` No axes
``'axes'`` Yes Series of axes
``'dict'`` No dict of artists
``'dict'`` Yes Series of dicts of artists
``'both'`` No namedtuple
``'both'`` Yes Series of namedtuples
================ ======= ==========================
``Groupby.boxplot`` always returns a ``Series`` of ``return_type``.
.. ipython:: python
:okwarning:
np.random.seed(1234)
df_box = pd.DataFrame(np.random.randn(50, 2))
df_box["g"] = np.random.choice(["A", "B"], size=50)
df_box.loc[df_box["g"] == "B", 1] += 3
@savefig boxplot_groupby.png
bp = df_box.boxplot(by="g")
.. ipython:: python
:suppress:
plt.close("all")
The subplots above are split by the numeric columns first, then the value of
the ``g`` column. Below the subplots are first split by the value of ``g``,
then by the numeric columns.
.. ipython:: python
:okwarning:
@savefig groupby_boxplot_vis.png
bp = df_box.groupby("g").boxplot()
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.area_plot:
Area plot
~~~~~~~~~
You can create area plots with :meth:`Series.plot.area` and :meth:`DataFrame.plot.area`.
Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains ``NaN``, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling ``plot``.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])
@savefig area_plot_stacked.png
df.plot.area();
To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5 unless otherwise specified:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig area_plot_unstacked.png
df.plot.area(stacked=False);
.. _visualization.scatter:
Scatter plot
~~~~~~~~~~~~
Scatter plot can be drawn by using the :meth:`DataFrame.plot.scatter` method.
Scatter plot requires numeric columns for the x and y axes.
These can be specified by the ``x`` and ``y`` keywords.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.close("all")
plt.figure()
.. ipython:: python
df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"])
df["species"] = pd.Categorical(
["setosa"] * 20 + ["versicolor"] * 20 + ["virginica"] * 10
)
@savefig scatter_plot.png
df.plot.scatter(x="a", y="b");
To plot multiple column groups in a single axes, repeat ``plot`` method specifying target ``ax``.
It is recommended to specify ``color`` and ``label`` keywords to distinguish each groups.
.. ipython:: python
:okwarning:
ax = df.plot.scatter(x="a", y="b", color="DarkBlue", label="Group 1")
@savefig scatter_plot_repeated.png
df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax);
.. ipython:: python
:suppress:
plt.close("all")
The keyword ``c`` may be given as the name of a column to provide colors for
each point:
.. ipython:: python
@savefig scatter_plot_colored.png
df.plot.scatter(x="a", y="b", c="c", s=50);
.. ipython:: python
:suppress:
plt.close("all")
If a categorical column is passed to ``c``, then a discrete colorbar will be produced:
.. versionadded:: 1.3.0
.. ipython:: python
@savefig scatter_plot_categorical.png
df.plot.scatter(x="a", y="b", c="species", cmap="viridis", s=50);
.. ipython:: python
:suppress:
plt.close("all")
You can pass other keywords supported by matplotlib
:meth:`scatter <matplotlib.axes.Axes.scatter>`. The example below shows a
bubble chart using a column of the ``DataFrame`` as the bubble size.
.. ipython:: python
@savefig scatter_plot_bubble.png
df.plot.scatter(x="a", y="b", s=df["c"] * 200);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`scatter <matplotlib.axes.Axes.scatter>` method and the
`matplotlib scatter documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html>`__ for more.
.. _visualization.hexbin:
Hexagonal bin plot
~~~~~~~~~~~~~~~~~~
You can create hexagonal bin plots with :meth:`DataFrame.plot.hexbin`.
Hexbin plots can be a useful alternative to scatter plots if your data are
too dense to plot each point individually.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
@savefig hexbin_plot.png
df.plot.hexbin(x="a", y="b", gridsize=25);
A useful keyword argument is ``gridsize``; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger ``gridsize`` means more, smaller
bins.
By default, a histogram of the counts around each ``(x, y)`` point is computed.
You can specify alternative aggregations by passing values to the ``C`` and
``reduce_C_function`` arguments. ``C`` specifies the value at each ``(x, y)`` point
and ``reduce_C_function`` is a function of one argument that reduces all the
values in a bin to a single number (e.g. ``mean``, ``max``, ``sum``, ``std``). In this
example the positions are given by columns ``a`` and ``b``, while the value is
given by column ``z``. The bins are aggregated with NumPy's ``max`` function.
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
df["z"] = np.random.uniform(0, 3, 1000)
@savefig hexbin_plot_agg.png
df.plot.hexbin(x="a", y="b", C="z", reduce_C_function=np.max, gridsize=25);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the
`matplotlib hexbin documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html>`__ for more.
.. _visualization.pie:
Pie plot
~~~~~~~~
You can create a pie plot with :meth:`DataFrame.plot.pie` or :meth:`Series.plot.pie`.
If your data includes any ``NaN``, they will be automatically filled with 0.
A ``ValueError`` will be raised if there are any negative values in your data.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
:okwarning:
series = pd.Series(3 * np.random.rand(4), index=["a", "b", "c", "d"], name="series")
@savefig series_pie_plot.png
series.plot.pie(figsize=(6, 6));
.. ipython:: python
:suppress:
plt.close("all")
For pie plots it's best to use square figures, i.e. a figure aspect ratio 1.
You can create the figure with equal width and height, or force the aspect ratio
to be equal after plotting by calling ``ax.set_aspect('equal')`` on the returned
``axes`` object.
Note that pie plot with :class:`DataFrame` requires that you either specify a
target column by the ``y`` argument or ``subplots=True``. When ``y`` is
specified, pie plot of selected column will be drawn. If ``subplots=True`` is
specified, pie plots for each column are drawn as subplots. A legend will be
drawn in each pie plots by default; specify ``legend=False`` to hide it.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = pd.DataFrame(
3 * np.random.rand(4, 2), index=["a", "b", "c", "d"], columns=["x", "y"]
)
@savefig df_pie_plot.png
df.plot.pie(subplots=True, figsize=(8, 4));
.. ipython:: python
:suppress:
plt.close("all")
You can use the ``labels`` and ``colors`` keywords to specify the labels and colors of each wedge.
.. warning::
Most pandas plots use the ``label`` and ``color`` arguments (note the lack of "s" on those).
To be consistent with :func:`matplotlib.pyplot.pie` you must use ``labels`` and ``colors``.
If you want to hide wedge labels, specify ``labels=None``.
If ``fontsize`` is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig series_pie_plot_options.png
series.plot.pie(
labels=["AA", "BB", "CC", "DD"],
colors=["r", "g", "b", "c"],
autopct="%.2f",
fontsize=20,
figsize=(6, 6),
);
If you pass values whose sum total is less than 1.0 they will be rescaled so that they sum to 1.
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
:okwarning:
series = pd.Series([0.1] * 4, index=["a", "b", "c", "d"], name="series2")
@savefig series_pie_plot_semi.png
series.plot.pie(figsize=(6, 6));
See the `matplotlib pie documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html>`__ for more.
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.missing_data:
Plotting with missing data
--------------------------
pandas tries to be pragmatic about plotting ``DataFrames`` or ``Series``
that contain missing data. Missing values are dropped, left out, or filled
depending on the plot type.
+----------------+--------------------------------------+
| Plot Type | NaN Handling |
+================+======================================+
| Line | Leave gaps at NaNs |
+----------------+--------------------------------------+
| Line (stacked) | Fill 0's |
+----------------+--------------------------------------+
| Bar | Fill 0's |
+----------------+--------------------------------------+
| Scatter | Drop NaNs |
+----------------+--------------------------------------+
| Histogram | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Box | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Area | Fill 0's |
+----------------+--------------------------------------+
| KDE | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Hexbin | Drop NaNs |
+----------------+--------------------------------------+
| Pie | Fill 0's |
+----------------+--------------------------------------+
If any of these defaults are not what you want, or if you want to be
explicit about how missing values are handled, consider using
:meth:`~pandas.DataFrame.fillna` or :meth:`~pandas.DataFrame.dropna`
before plotting.
.. _visualization.tools:
Plotting tools
--------------
These functions can be imported from ``pandas.plotting``
and take a :class:`Series` or :class:`DataFrame` as an argument.
.. _visualization.scatter_matrix:
Scatter matrix plot
~~~~~~~~~~~~~~~~~~~
You can create a scatter plot matrix using the
``scatter_matrix`` method in ``pandas.plotting``:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.plotting import scatter_matrix
df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"])
@savefig scatter_matrix_kde.png
scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.kde:
Density plot
~~~~~~~~~~~~
You can create density plots using the :meth:`Series.plot.kde` and :meth:`DataFrame.plot.kde` methods.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
ser = pd.Series(np.random.randn(1000))
@savefig kde_plot.png
ser.plot.kde();
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.andrews_curves:
Andrews curves
~~~~~~~~~~~~~~
Andrews curves allow one to plot multivariate data as a large number
of curves that are created using the attributes of samples as coefficients
for Fourier series, see the `Wikipedia entry <https://en.wikipedia.org/wiki/Andrews_plot>`__
for more information. By coloring these curves differently for each class
it is possible to visualize data clustering. Curves belonging to samples
of the same class will usually be closer together and form larger structures.
**Note**: The "Iris" dataset is available `here <https://raw.githubusercontent.com/pandas-dev/pandas/main/pandas/tests/io/data/csv/iris.csv>`__.
.. ipython:: python
from pandas.plotting import andrews_curves
data = pd.read_csv("data/iris.data")
plt.figure();
@savefig andrews_curves.png
andrews_curves(data, "Name");
.. _visualization.parallel_coordinates:
Parallel coordinates
~~~~~~~~~~~~~~~~~~~~
Parallel coordinates is a plotting technique for plotting multivariate data,
see the `Wikipedia entry <https://en.wikipedia.org/wiki/Parallel_coordinates>`__
for an introduction.
Parallel coordinates allows one to see clusters in data and to estimate other statistics visually.
Using parallel coordinates points are represented as connected line segments.
Each vertical line represents one attribute. One set of connected line segments
represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python
from pandas.plotting import parallel_coordinates
data = pd.read_csv("data/iris.data")
plt.figure();
@savefig parallel_coordinates.png
parallel_coordinates(data, "Name");
.. ipython:: python
:suppress: