-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathmerging.rst
1095 lines (781 loc) · 29.8 KB
/
merging.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.. _merging:
{{ header }}
.. ipython:: python
:suppress:
from matplotlib import pyplot as plt
import pandas.util._doctools as doctools
p = doctools.TablePlotter()
************************************
Merge, join, concatenate and compare
************************************
pandas provides various methods for combining and comparing :class:`Series` or
:class:`DataFrame`.
* :func:`~pandas.concat`: Merge multiple :class:`Series` or :class:`DataFrame` objects along a shared index or column
* :meth:`DataFrame.join`: Merge multiple :class:`DataFrame` objects along the columns
* :meth:`DataFrame.combine_first`: Update missing values with non-missing values in the same location
* :func:`~pandas.merge`: Combine two :class:`Series` or :class:`DataFrame` objects with SQL-style joining
* :func:`~pandas.merge_ordered`: Combine two :class:`Series` or :class:`DataFrame` objects along an ordered axis
* :func:`~pandas.merge_asof`: Combine two :class:`Series` or :class:`DataFrame` objects by near instead of exact matching keys
* :meth:`Series.compare` and :meth:`DataFrame.compare`: Show differences in values between two :class:`Series` or :class:`DataFrame` objects
.. _merging.concat:
:func:`~pandas.concat`
----------------------
The :func:`~pandas.concat` function concatenates an arbitrary amount of
:class:`Series` or :class:`DataFrame` objects along an axis while
performing optional set logic (union or intersection) of the indexes on
the other axes. Like ``numpy.concatenate``, :func:`~pandas.concat`
takes a list or dict of homogeneously-typed objects and concatenates them.
.. ipython:: python
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
},
index=[0, 1, 2, 3],
)
df2 = pd.DataFrame(
{
"A": ["A4", "A5", "A6", "A7"],
"B": ["B4", "B5", "B6", "B7"],
"C": ["C4", "C5", "C6", "C7"],
"D": ["D4", "D5", "D6", "D7"],
},
index=[4, 5, 6, 7],
)
df3 = pd.DataFrame(
{
"A": ["A8", "A9", "A10", "A11"],
"B": ["B8", "B9", "B10", "B11"],
"C": ["C8", "C9", "C10", "C11"],
"D": ["D8", "D9", "D10", "D11"],
},
index=[8, 9, 10, 11],
)
frames = [df1, df2, df3]
result = pd.concat(frames)
result
.. ipython:: python
:suppress:
@savefig merging_concat_basic.png
p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. note::
:func:`~pandas.concat` makes a full copy of the data, and iteratively
reusing :func:`~pandas.concat` can create unnecessary copies. Collect all
:class:`DataFrame` or :class:`Series` objects in a list before using
:func:`~pandas.concat`.
.. code-block:: python
frames = [process_your_file(f) for f in files]
result = pd.concat(frames)
.. note::
When concatenating :class:`DataFrame` with named axes, pandas will attempt to preserve
these index/column names whenever possible. In the case where all inputs share a
common name, this name will be assigned to the result. When the input names do
not all agree, the result will be unnamed. The same is true for :class:`MultiIndex`,
but the logic is applied separately on a level-by-level basis.
Joining logic of the resulting axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``join`` keyword specifies how to handle axis values that don't exist in the first
:class:`DataFrame`.
``join='outer'`` takes the union of all axis values
.. ipython:: python
df4 = pd.DataFrame(
{
"B": ["B2", "B3", "B6", "B7"],
"D": ["D2", "D3", "D6", "D7"],
"F": ["F2", "F3", "F6", "F7"],
},
index=[2, 3, 6, 7],
)
result = pd.concat([df1, df4], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
``join='inner'`` takes the intersection of the axis values
.. ipython:: python
result = pd.concat([df1, df4], axis=1, join="inner")
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1_inner.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
To perform an effective "left" join using the *exact index* from the original
:class:`DataFrame`, result can be reindexed.
.. ipython:: python
result = pd.concat([df1, df4], axis=1).reindex(df1.index)
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1_join_axes.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
.. _merging.ignore_index:
Ignoring indexes on the concatenation axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For :class:`DataFrame` objects which don't have a meaningful index, the ``ignore_index``
ignores overlapping indexes.
.. ipython:: python
result = pd.concat([df1, df4], ignore_index=True, sort=False)
result
.. ipython:: python
:suppress:
@savefig merging_concat_ignore_index.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=True);
plt.close("all");
.. _merging.mixed_ndims:
Concatenating :class:`Series` and :class:`DataFrame` together
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can concatenate a mix of :class:`Series` and :class:`DataFrame` objects. The
:class:`Series` will be transformed to :class:`DataFrame` with the column name as
the name of the :class:`Series`.
.. ipython:: python
s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
result = pd.concat([df1, s1], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_mixed_ndim.png
p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
plt.close("all");
Unnamed :class:`Series` will be numbered consecutively.
.. ipython:: python
s2 = pd.Series(["_0", "_1", "_2", "_3"])
result = pd.concat([df1, s2, s2, s2], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_unnamed_series.png
p.plot([df1, s2], result, labels=["df1", "s2"], vertical=False);
plt.close("all");
``ignore_index=True`` will drop all name references.
.. ipython:: python
result = pd.concat([df1, s1], axis=1, ignore_index=True)
result
.. ipython:: python
:suppress:
@savefig merging_concat_series_ignore_index.png
p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
plt.close("all");
Resulting ``keys``
~~~~~~~~~~~~~~~~~~
The ``keys`` argument adds another axis level to the resulting index or column (creating
a :class:`MultiIndex`) associate specific keys with each original :class:`DataFrame`.
.. ipython:: python
result = pd.concat(frames, keys=["x", "y", "z"])
result
result.loc["y"]
.. ipython:: python
:suppress:
@savefig merging_concat_keys.png
p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True)
plt.close("all");
The ``keys`` argument can override the column names
when creating a new :class:`DataFrame` based on existing :class:`Series`.
.. ipython:: python
s3 = pd.Series([0, 1, 2, 3], name="foo")
s4 = pd.Series([0, 1, 2, 3])
s5 = pd.Series([0, 1, 4, 5])
pd.concat([s3, s4, s5], axis=1)
pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
You can also pass a dict to :func:`concat` in which case the dict keys will be used
for the ``keys`` argument unless other ``keys`` argument is specified:
.. ipython:: python
pieces = {"x": df1, "y": df2, "z": df3}
result = pd.concat(pieces)
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. ipython:: python
result = pd.concat(pieces, keys=["z", "y"])
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict_keys.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
The :class:`MultiIndex` created has levels that are constructed from the passed keys and
the index of the :class:`DataFrame` pieces:
.. ipython:: python
result.index.levels
``levels`` argument allows specifying resulting levels associated with the ``keys``
.. ipython:: python
result = pd.concat(
pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
)
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict_keys_names.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. ipython:: python
result.index.levels
.. _merging.append.row:
Appending rows to a :class:`DataFrame`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have a :class:`Series` that you want to append as a single row to a :class:`DataFrame`, you can convert the row into a
:class:`DataFrame` and use :func:`concat`
.. ipython:: python
s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
result = pd.concat([df1, s2.to_frame().T], ignore_index=True)
result
.. ipython:: python
:suppress:
@savefig merging_append_series_as_row.png
p.plot([df1, s2], result, labels=["df1", "s2"], vertical=True);
plt.close("all");
.. _merging.join:
:func:`~pandas.merge`
---------------------
:func:`~pandas.merge` performs join operations similar to relational databases like SQL.
Users who are familiar with SQL but new to pandas can reference a
:ref:`comparison with SQL<compare_with_sql.join>`.
Merge types
~~~~~~~~~~~
:func:`~pandas.merge` implements common SQL style joining operations.
* **one-to-one**: joining two :class:`DataFrame` objects on
their indexes which must contain unique values.
* **many-to-one**: joining a unique index to one or
more columns in a different :class:`DataFrame`.
* **many-to-many** : joining columns on columns.
.. note::
When joining columns on columns, potentially a many-to-many join, any
indexes on the passed :class:`DataFrame` objects **will be discarded**.
For a **many-to-many** join, if a key combination appears
more than once in both tables, the :class:`DataFrame` will have the **Cartesian
product** of the associated data.
.. ipython:: python
left = pd.DataFrame(
{
"key": ["K0", "K1", "K2", "K3"],
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
}
)
right = pd.DataFrame(
{
"key": ["K0", "K1", "K2", "K3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
}
)
result = pd.merge(left, right, on="key")
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
The ``how`` argument to :func:`~pandas.merge` specifies which keys are
included in the resulting table. If a key combination **does not appear** in
either the left or right tables, the values in the joined table will be
``NA``. Here is a summary of the ``how`` options and their SQL equivalent names:
.. csv-table::
:header: "Merge method", "SQL Join Name", "Description"
:widths: 20, 20, 60
``left``, ``LEFT OUTER JOIN``, Use keys from left frame only
``right``, ``RIGHT OUTER JOIN``, Use keys from right frame only
``outer``, ``FULL OUTER JOIN``, Use union of keys from both frames
``inner``, ``INNER JOIN``, Use intersection of keys from both frames
``cross``, ``CROSS JOIN``, Create the cartesian product of rows of both frames
.. ipython:: python
left = pd.DataFrame(
{
"key1": ["K0", "K0", "K1", "K2"],
"key2": ["K0", "K1", "K0", "K1"],
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
}
)
right = pd.DataFrame(
{
"key1": ["K0", "K1", "K1", "K2"],
"key2": ["K0", "K0", "K0", "K0"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
}
)
result = pd.merge(left, right, how="left", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_left.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="right", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_right.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
.. ipython:: python
result = pd.merge(left, right, how="outer", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_outer.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="inner", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="cross")
result
.. ipython:: python
:suppress:
@savefig merging_merge_cross.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
You can :class:`Series` and a :class:`DataFrame` with a :class:`MultiIndex` if the names of
the :class:`MultiIndex` correspond to the columns from the :class:`DataFrame`. Transform
the :class:`Series` to a :class:`DataFrame` using :meth:`Series.reset_index` before merging
.. ipython:: python
df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})
df
ser = pd.Series(
["a", "b", "c", "d", "e", "f"],
index=pd.MultiIndex.from_arrays(
[["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
),
)
ser
pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Performing an outer join with duplicate join keys in :class:`DataFrame`
.. ipython:: python
left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})
right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
result = pd.merge(left, right, on="B", how="outer")
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_dup.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. warning::
Merging on duplicate keys significantly increase the dimensions of the result
and can cause a memory overflow.
.. _merging.validation:
Merge key uniqueness
~~~~~~~~~~~~~~~~~~~~
The ``validate`` argument checks whether the uniqueness of merge keys.
Key uniqueness is checked before merge operations and can protect against memory overflows
and unexpected key duplication.
.. ipython:: python
:okexcept:
left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
If the user is aware of the duplicates in the right :class:`DataFrame` but wants to
ensure there are no duplicates in the left :class:`DataFrame`, one can use the
``validate='one_to_many'`` argument instead, which will not raise an exception.
.. ipython:: python
pd.merge(left, right, on="B", how="outer", validate="one_to_many")
.. _merging.indicator:
Merge result indicator
~~~~~~~~~~~~~~~~~~~~~~
:func:`~pandas.merge` accepts the argument ``indicator``. If ``True``, a
Categorical-type column called ``_merge`` will be added to the output object
that takes on values:
=================================== ================
Observation Origin ``_merge`` value
=================================== ================
Merge key only in ``'left'`` frame ``left_only``
Merge key only in ``'right'`` frame ``right_only``
Merge key in both frames ``both``
=================================== ================
.. ipython:: python
df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})
df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})
pd.merge(df1, df2, on="col1", how="outer", indicator=True)
A string argument to ``indicator`` will use the value as the name for the indicator column.
.. ipython:: python
pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Overlapping value columns
~~~~~~~~~~~~~~~~~~~~~~~~~
The merge ``suffixes`` argument takes a tuple of list of strings to append to
overlapping column names in the input :class:`DataFrame` to disambiguate the result
columns:
.. ipython:: python
left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})
right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})
result = pd.merge(left, right, on="k")
result
.. ipython:: python
:suppress:
@savefig merging_merge_overlapped.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))
result
.. ipython:: python
:suppress:
@savefig merging_merge_overlapped_suffix.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
:meth:`DataFrame.join`
----------------------
:meth:`DataFrame.join` combines the columns of multiple,
potentially differently-indexed :class:`DataFrame` into a single result
:class:`DataFrame`.
.. ipython:: python
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
)
right = pd.DataFrame(
{"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
)
result = left.join(right)
result
.. ipython:: python
:suppress:
@savefig merging_join.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = left.join(right, how="outer")
result
.. ipython:: python
:suppress:
@savefig merging_join_outer.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = left.join(right, how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
:meth:`DataFrame.join` takes an optional ``on`` argument which may be a column
or multiple column names that the passed :class:`DataFrame` is to be
aligned.
.. ipython:: python
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key": ["K0", "K1", "K0", "K1"],
}
)
right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])
result = left.join(right, on="key")
result
.. ipython:: python
:suppress:
@savefig merging_join_key_columns.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(
left, right, left_on="key", right_index=True, how="left", sort=False
)
result
.. ipython:: python
:suppress:
@savefig merging_merge_key_columns.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.multikey_join:
To join on multiple keys, the passed :class:`DataFrame` must have a :class:`MultiIndex`:
.. ipython:: python
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key1": ["K0", "K0", "K1", "K2"],
"key2": ["K0", "K1", "K0", "K1"],
}
)
index = pd.MultiIndex.from_tuples(
[("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
)
result = left.join(right, on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_join_multikeys.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.df_inner_join:
The default for :class:`DataFrame.join` is to perform a left join
which uses only the keys found in the
calling :class:`DataFrame`. Other join types can be specified with ``how``.
.. ipython:: python
result = left.join(right, on=["key1", "key2"], how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_multikeys_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.join_on_mi:
Joining a single Index to a MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can join a :class:`DataFrame` with a :class:`Index` to a :class:`DataFrame` with a :class:`MultiIndex` on a level.
The ``name`` of the :class:`Index` with match the level name of the :class:`MultiIndex`.
.. ipython:: python
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
index=pd.Index(["K0", "K1", "K2"], name="key"),
)
index = pd.MultiIndex.from_tuples(
[("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
names=["key", "Y"],
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
index=index,
)
result = left.join(right, how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_multiindex_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.join_with_two_multi_indexes:
Joining with two :class:`MultiIndex`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :class:`MultiIndex` of the input argument must be completely used
in the join and is a subset of the indices in the left argument.
.. ipython:: python
leftindex = pd.MultiIndex.from_product(
[list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
)
left = pd.DataFrame({"v1": range(12)}, index=leftindex)
left
rightindex = pd.MultiIndex.from_product(
[list("abc"), list("xy")], names=["abc", "xy"]
)
right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)
right
left.join(right, on=["abc", "xy"], how="inner")
.. ipython:: python
leftindex = pd.MultiIndex.from_tuples(
[("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
)
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
)
rightindex = pd.MultiIndex.from_tuples(
[("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
)
result = pd.merge(
left.reset_index(), right.reset_index(), on=["key"], how="inner"
).set_index(["key", "X", "Y"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_two_multiindex.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.merge_on_columns_and_levels:
Merging on a combination of columns and index levels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Strings passed as the ``on``, ``left_on``, and ``right_on`` parameters
may refer to either column names or index level names. This enables merging
:class:`DataFrame` instances on a combination of index levels and columns without
resetting indexes.
.. ipython:: python
left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key2": ["K0", "K1", "K0", "K1"],
},
index=left_index,
)
right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")
right = pd.DataFrame(
{
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
"key2": ["K0", "K0", "K0", "K1"],
},
index=right_index,
)
result = left.merge(right, on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merge_on_index_and_column.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. note::
When :class:`DataFrame` are joined on a string that matches an index level in both
arguments, the index level is preserved as an index level in the resulting
:class:`DataFrame`.
.. note::
When :class:`DataFrame` are joined using only some of the levels of a :class:`MultiIndex`,
the extra levels will be dropped from the resulting join. To
preserve those levels, use :meth:`DataFrame.reset_index` on those level
names to move those levels to columns prior to the join.
.. _merging.multiple_join:
Joining multiple :class:`DataFrame`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A list or tuple of ``:class:`DataFrame``` can also be passed to :meth:`~DataFrame.join`
to join them together on their indexes.
.. ipython:: python
right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])
result = left.join([right, right2])
.. ipython:: python
:suppress:
@savefig merging_join_multi_df.png
p.plot(
[left, right, right2],
result,
labels=["left", "right", "right2"],
vertical=False,
);
plt.close("all");
.. _merging.combine_first.update:
:meth:`DataFrame.combine_first`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:meth:`DataFrame.combine_first` update missing values from one :class:`DataFrame`
with the non-missing values in another :class:`DataFrame` in the corresponding
location.
.. ipython:: python
df1 = pd.DataFrame(
[[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
)
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])
result = df1.combine_first(df2)
result
.. ipython:: python
:suppress:
@savefig merging_combine_first.png
p.plot([df1, df2], result, labels=["df1", "df2"], vertical=False);
plt.close("all");
.. _merging.merge_ordered:
:func:`merge_ordered`
---------------------
:func:`merge_ordered` combines order data such as numeric or time series data
with optional filling of missing data with ``fill_method``.
.. ipython:: python
left = pd.DataFrame(
{"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
)
right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})
pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
.. _merging.merge_asof:
:func:`merge_asof`
---------------------
:func:`merge_asof` is similar to an ordered left-join except that mactches are on the
nearest key rather than equal keys. For each row in the ``left`` :class:`DataFrame`,
the last row in the ``right`` :class:`DataFrame` are selected where the ``on`` key is less
than the left's key. Both :class:`DataFrame` must be sorted by the key.
Optionally an :func:`merge_asof` can perform a group-wise merge by matching the
``by`` key in addition to the nearest match on the ``on`` key.
.. ipython:: python
trades = pd.DataFrame(
{
"time": pd.to_datetime(
[
"20160525 13:30:00.023",
"20160525 13:30:00.038",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
]
),
"ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
"price": [51.95, 51.95, 720.77, 720.92, 98.00],
"quantity": [75, 155, 100, 100, 100],