-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathpickle.py
92 lines (70 loc) · 2.28 KB
/
pickle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
""" pickle compat """
import numpy as np
from numpy.lib.format import read_array, write_array
from pandas.compat import BytesIO, cPickle as pkl, pickle_compat as pc, PY3
from pandas.types.common import is_datetime64_dtype, _NS_DTYPE
def to_pickle(obj, path, protocol=pkl.HIGHEST_PROTOCOL):
"""
Pickle (serialize) object to input file path
Parameters
----------
obj : any object
path : string
File path
"""
with open(path, 'wb') as f:
pkl.dump(obj, f, protocol=protocol)
def read_pickle(path):
"""
Load pickled pandas object (or any other pickled object) from the specified
file path
Warning: Loading pickled data received from untrusted sources can be
unsafe. See: http://docs.python.org/2.7/library/pickle.html
Parameters
----------
path : string
File path
Returns
-------
unpickled : type of object stored in file
"""
def try_read(path, encoding=None):
# try with cPickle
# try with current pickle, if we have a Type Error then
# try with the compat pickle to handle subclass changes
# pass encoding only if its not None as py2 doesn't handle
# the param
# cpickle
# GH 6899
try:
with open(path, 'rb') as fh:
return pkl.load(fh)
except Exception:
# reg/patched pickle
try:
with open(path, 'rb') as fh:
return pc.load(fh, encoding=encoding, compat=False)
# compat pickle
except:
with open(path, 'rb') as fh:
return pc.load(fh, encoding=encoding, compat=True)
try:
return try_read(path)
except:
if PY3:
return try_read(path, encoding='latin1')
raise
# compat with sparse pickle / unpickle
def _pickle_array(arr):
arr = arr.view(np.ndarray)
buf = BytesIO()
write_array(buf, arr)
return buf.getvalue()
def _unpickle_array(bytes):
arr = read_array(BytesIO(bytes))
# All datetimes should be stored as M8[ns]. When unpickling with
# numpy1.6, it will read these as M8[us]. So this ensures all
# datetime64 types are read as MS[ns]
if is_datetime64_dtype(arr):
arr = arr.view(_NS_DTYPE)
return arr