-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathnumeric.py
505 lines (409 loc) · 15.7 KB
/
numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import warnings
import numpy as np
from pandas._libs import index as libindex, lib
from pandas.util._decorators import Appender, cache_readonly
from pandas.core.dtypes.cast import astype_nansafe
from pandas.core.dtypes.common import (
is_bool,
is_bool_dtype,
is_dtype_equal,
is_extension_array_dtype,
is_float,
is_float_dtype,
is_integer_dtype,
is_scalar,
needs_i8_conversion,
pandas_dtype,
)
from pandas.core.dtypes.generic import (
ABCFloat64Index,
ABCInt64Index,
ABCRangeIndex,
ABCUInt64Index,
)
from pandas.core.dtypes.missing import isna
from pandas.core import algorithms
import pandas.core.common as com
from pandas.core.indexes.base import Index, InvalidIndexError, _index_shared_docs
from pandas.core.ops import get_op_result_name
_num_index_shared_docs = dict()
class NumericIndex(Index):
"""
Provide numeric type operations
This is an abstract class
"""
_is_numeric_dtype = True
def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=None):
if fastpath is not None:
warnings.warn(
"The 'fastpath' keyword is deprecated, and will be "
"removed in a future version.",
FutureWarning,
stacklevel=2,
)
if fastpath:
return cls._simple_new(data, name=name)
# is_scalar, generators handled in coerce_to_ndarray
data = cls._coerce_to_ndarray(data)
if issubclass(data.dtype.type, str):
cls._string_data_error(data)
if copy or not is_dtype_equal(data.dtype, cls._default_dtype):
subarr = np.array(data, dtype=cls._default_dtype, copy=copy)
cls._assert_safe_casting(data, subarr)
else:
subarr = data
if name is None and hasattr(data, "name"):
name = data.name
return cls._simple_new(subarr, name=name)
@Appender(_index_shared_docs["_maybe_cast_slice_bound"])
def _maybe_cast_slice_bound(self, label, side, kind):
assert kind in ["ix", "loc", "getitem", None]
# we will try to coerce to integers
return self._maybe_cast_indexer(label)
@Appender(_index_shared_docs["_shallow_copy"])
def _shallow_copy(self, values=None, **kwargs):
if values is not None and not self._can_hold_na:
# Ensure we are not returning an Int64Index with float data:
return self._shallow_copy_with_infer(values=values, **kwargs)
return super()._shallow_copy(values=values, **kwargs)
def _convert_for_op(self, value):
""" Convert value to be insertable to ndarray """
if is_bool(value) or is_bool_dtype(value):
# force conversion to object
# so we don't lose the bools
raise TypeError
return value
def _convert_tolerance(self, tolerance, target):
tolerance = np.asarray(tolerance)
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError("list-like tolerance size must match target index size")
if not np.issubdtype(tolerance.dtype, np.number):
if tolerance.ndim > 0:
raise ValueError(
(
"tolerance argument for %s must contain "
"numeric elements if it is list type"
)
% (type(self).__name__,)
)
else:
raise ValueError(
(
"tolerance argument for %s must be numeric "
"if it is a scalar: %r"
)
% (type(self).__name__, tolerance)
)
return tolerance
@classmethod
def _assert_safe_casting(cls, data, subarr):
"""
Subclasses need to override this only if the process of casting data
from some accepted dtype to the internal dtype(s) bears the risk of
truncation (e.g. float to int).
"""
pass
def _concat_same_dtype(self, indexes, name):
result = type(indexes[0])(np.concatenate([x._values for x in indexes]))
return result.rename(name)
@property
def is_all_dates(self):
"""
Checks that all the labels are datetime objects
"""
return False
@Appender(Index.insert.__doc__)
def insert(self, loc, item):
# treat NA values as nans:
if is_scalar(item) and isna(item):
item = self._na_value
return super().insert(loc, item)
def _union(self, other, sort):
# Right now, we treat union(int, float) a bit special.
# See https://github.com/pandas-dev/pandas/issues/26778 for discussion
# We may change union(int, float) to go to object.
# float | [u]int -> float (the special case)
# <T> | <T> -> T
# <T> | <U> -> object
needs_cast = (is_integer_dtype(self.dtype) and is_float_dtype(other.dtype)) or (
is_integer_dtype(other.dtype) and is_float_dtype(self.dtype)
)
if needs_cast:
first = self.astype("float")
second = other.astype("float")
return first._union(second, sort)
else:
return super()._union(other, sort)
_num_index_shared_docs[
"class_descr"
] = """
Immutable ndarray implementing an ordered, sliceable set. The basic object
storing axis labels for all pandas objects. %(klass)s is a special case
of `Index` with purely %(ltype)s labels. %(extra)s
Parameters
----------
data : array-like (1-dimensional)
dtype : NumPy dtype (default: %(dtype)s)
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
Attributes
----------
None
Methods
-------
None
See Also
--------
Index : The base pandas Index type.
Notes
-----
An Index instance can **only** contain hashable objects.
"""
_int64_descr_args = dict(klass="Int64Index", ltype="integer", dtype="int64", extra="")
class IntegerIndex(NumericIndex):
"""
This is an abstract class for Int64Index, UInt64Index.
"""
def __contains__(self, key):
"""
Check if key is a float and has a decimal. If it has, return False.
"""
hash(key)
try:
if is_float(key) and int(key) != key:
return False
return key in self._engine
except (OverflowError, TypeError, ValueError):
return False
class Int64Index(IntegerIndex):
__doc__ = _num_index_shared_docs["class_descr"] % _int64_descr_args
_typ = "int64index"
_can_hold_na = False
_engine_type = libindex.Int64Engine
_default_dtype = np.int64
@property
def inferred_type(self):
"""Always 'integer' for ``Int64Index``"""
return "integer"
@property
def asi8(self):
# do not cache or you'll create a memory leak
return self.values.view("i8")
@Appender(_index_shared_docs["_convert_scalar_indexer"])
def _convert_scalar_indexer(self, key, kind=None):
assert kind in ["ix", "loc", "getitem", "iloc", None]
# don't coerce ilocs to integers
if kind != "iloc":
key = self._maybe_cast_indexer(key)
return super()._convert_scalar_indexer(key, kind=kind)
def _wrap_joined_index(self, joined, other):
name = get_op_result_name(self, other)
return Int64Index(joined, name=name)
@classmethod
def _assert_safe_casting(cls, data, subarr):
"""
Ensure incoming data can be represented as ints.
"""
if not issubclass(data.dtype.type, np.signedinteger):
if not np.array_equal(data, subarr):
raise TypeError("Unsafe NumPy casting, you must explicitly cast")
def _is_compatible_with_other(self, other):
return super()._is_compatible_with_other(other) or all(
isinstance(type(obj), (ABCInt64Index, ABCFloat64Index, ABCRangeIndex))
for obj in [self, other]
)
Int64Index._add_numeric_methods()
Int64Index._add_logical_methods()
_uint64_descr_args = dict(
klass="UInt64Index", ltype="unsigned integer", dtype="uint64", extra=""
)
class UInt64Index(IntegerIndex):
__doc__ = _num_index_shared_docs["class_descr"] % _uint64_descr_args
_typ = "uint64index"
_can_hold_na = False
_engine_type = libindex.UInt64Engine
_default_dtype = np.uint64
@property
def inferred_type(self):
"""Always 'integer' for ``UInt64Index``"""
return "integer"
@property
def asi8(self):
# do not cache or you'll create a memory leak
return self.values.view("u8")
@Appender(_index_shared_docs["_convert_scalar_indexer"])
def _convert_scalar_indexer(self, key, kind=None):
assert kind in ["ix", "loc", "getitem", "iloc", None]
# don't coerce ilocs to integers
if kind != "iloc":
key = self._maybe_cast_indexer(key)
return super()._convert_scalar_indexer(key, kind=kind)
@Appender(_index_shared_docs["_convert_arr_indexer"])
def _convert_arr_indexer(self, keyarr):
# Cast the indexer to uint64 if possible so that the values returned
# from indexing are also uint64.
if is_integer_dtype(keyarr) or (
lib.infer_dtype(keyarr, skipna=False) == "integer"
):
keyarr = com.asarray_tuplesafe(keyarr, dtype=np.uint64)
else:
keyarr = com.asarray_tuplesafe(keyarr)
return keyarr
@Appender(_index_shared_docs["_convert_index_indexer"])
def _convert_index_indexer(self, keyarr):
# Cast the indexer to uint64 if possible so
# that the values returned from indexing are
# also uint64.
if keyarr.is_integer():
return keyarr.astype(np.uint64)
return keyarr
def _wrap_joined_index(self, joined, other):
name = get_op_result_name(self, other)
return UInt64Index(joined, name=name)
@classmethod
def _assert_safe_casting(cls, data, subarr):
"""
Ensure incoming data can be represented as uints.
"""
if not issubclass(data.dtype.type, np.unsignedinteger):
if not np.array_equal(data, subarr):
raise TypeError("Unsafe NumPy casting, you must explicitly cast")
def _is_compatible_with_other(self, other):
return super()._is_compatible_with_other(other) or all(
isinstance(type(obj), (ABCUInt64Index, ABCFloat64Index))
for obj in [self, other]
)
UInt64Index._add_numeric_methods()
UInt64Index._add_logical_methods()
_float64_descr_args = dict(
klass="Float64Index", dtype="float64", ltype="float", extra=""
)
class Float64Index(NumericIndex):
__doc__ = _num_index_shared_docs["class_descr"] % _float64_descr_args
_typ = "float64index"
_engine_type = libindex.Float64Engine
_default_dtype = np.float64
@property
def inferred_type(self):
"""Always 'floating' for ``Float64Index``"""
return "floating"
@Appender(_index_shared_docs["astype"])
def astype(self, dtype, copy=True):
dtype = pandas_dtype(dtype)
if needs_i8_conversion(dtype):
msg = (
"Cannot convert Float64Index to dtype {dtype}; integer "
"values are required for conversion"
).format(dtype=dtype)
raise TypeError(msg)
elif is_integer_dtype(dtype) and not is_extension_array_dtype(dtype):
# TODO(jreback); this can change once we have an EA Index type
# GH 13149
arr = astype_nansafe(self.values, dtype=dtype)
return Int64Index(arr)
return super().astype(dtype, copy=copy)
@Appender(_index_shared_docs["_convert_scalar_indexer"])
def _convert_scalar_indexer(self, key, kind=None):
assert kind in ["ix", "loc", "getitem", "iloc", None]
if kind == "iloc":
return self._validate_indexer("positional", key, kind)
return key
@Appender(_index_shared_docs["_convert_slice_indexer"])
def _convert_slice_indexer(self, key, kind=None):
# if we are not a slice, then we are done
if not isinstance(key, slice):
return key
if kind == "iloc":
return super()._convert_slice_indexer(key, kind=kind)
# translate to locations
return self.slice_indexer(key.start, key.stop, key.step, kind=kind)
def _format_native_types(
self, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs
):
from pandas.io.formats.format import FloatArrayFormatter
formatter = FloatArrayFormatter(
self.values,
na_rep=na_rep,
float_format=float_format,
decimal=decimal,
quoting=quoting,
fixed_width=False,
)
return formatter.get_result_as_array()
def get_value(self, series, key):
""" we always want to get an index value, never a value """
if not is_scalar(key):
raise InvalidIndexError
k = com.values_from_object(key)
loc = self.get_loc(k)
new_values = com.values_from_object(series)[loc]
return new_values
def equals(self, other):
"""
Determines if two Index objects contain the same elements.
"""
if self is other:
return True
if not isinstance(other, Index):
return False
# need to compare nans locations and make sure that they are the same
# since nans don't compare equal this is a bit tricky
try:
if not isinstance(other, Float64Index):
other = self._constructor(other)
if not is_dtype_equal(self.dtype, other.dtype) or self.shape != other.shape:
return False
left, right = self._ndarray_values, other._ndarray_values
return ((left == right) | (self._isnan & other._isnan)).all()
except (TypeError, ValueError):
return False
def __contains__(self, other):
if super().__contains__(other):
return True
try:
# if other is a sequence this throws a ValueError
return np.isnan(other) and self.hasnans
except ValueError:
try:
return len(other) <= 1 and other.item() in self
except AttributeError:
return len(other) <= 1 and other in self
except TypeError:
pass
except TypeError:
pass
return False
@Appender(_index_shared_docs["get_loc"])
def get_loc(self, key, method=None, tolerance=None):
try:
if np.all(np.isnan(key)) or is_bool(key):
nan_idxs = self._nan_idxs
try:
return nan_idxs.item()
except ValueError:
if not len(nan_idxs):
raise KeyError(key)
return nan_idxs
except (TypeError, NotImplementedError):
pass
return super().get_loc(key, method=method, tolerance=tolerance)
@cache_readonly
def is_unique(self):
return super().is_unique and self._nan_idxs.size < 2
@Appender(Index.isin.__doc__)
def isin(self, values, level=None):
if level is not None:
self._validate_index_level(level)
return algorithms.isin(np.array(self), values)
def _is_compatible_with_other(self, other):
return super()._is_compatible_with_other(other) or all(
isinstance(
type(obj),
(ABCInt64Index, ABCFloat64Index, ABCUInt64Index, ABCRangeIndex),
)
for obj in [self, other]
)
Float64Index._add_numeric_methods()
Float64Index._add_logical_methods_disabled()