-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy path__init__.py
1168 lines (953 loc) · 32.3 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import collections
from datetime import datetime
from decimal import Decimal
import operator
import os
import re
import string
from sys import byteorder
from typing import (
TYPE_CHECKING,
Callable,
ContextManager,
Counter,
Iterable,
)
import warnings
import numpy as np
from pandas._config.localization import (
can_set_locale,
get_locales,
set_locale,
)
from pandas._typing import (
Dtype,
Frequency,
)
from pandas.compat import pa_version_under1p01
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
is_sequence,
is_unsigned_integer_dtype,
pandas_dtype,
)
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
bdate_range,
)
from pandas._testing._io import (
close,
network,
round_trip_localpath,
round_trip_pathlib,
round_trip_pickle,
write_to_compressed,
)
from pandas._testing._random import (
randbool,
rands,
rands_array,
)
from pandas._testing._warnings import (
assert_produces_warning,
maybe_produces_warning,
)
from pandas._testing.asserters import (
assert_almost_equal,
assert_attr_equal,
assert_categorical_equal,
assert_class_equal,
assert_contains_all,
assert_copy,
assert_datetime_array_equal,
assert_dict_equal,
assert_equal,
assert_extension_array_equal,
assert_frame_equal,
assert_index_equal,
assert_indexing_slices_equivalent,
assert_interval_array_equal,
assert_is_sorted,
assert_is_valid_plot_return_object,
assert_metadata_equivalent,
assert_numpy_array_equal,
assert_period_array_equal,
assert_series_equal,
assert_sp_array_equal,
assert_timedelta_array_equal,
raise_assert_detail,
)
from pandas._testing.compat import (
get_dtype,
get_obj,
)
from pandas._testing.contexts import (
RNGContext,
decompress_file,
ensure_clean,
ensure_clean_dir,
ensure_safe_environment_variables,
set_timezone,
use_numexpr,
with_csv_dialect,
)
from pandas.core.api import (
Float64Index,
Int64Index,
NumericIndex,
UInt64Index,
)
from pandas.core.arrays import (
BaseMaskedArray,
ExtensionArray,
PandasArray,
)
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
from pandas.core.construction import extract_array
if TYPE_CHECKING:
from pandas import (
PeriodIndex,
TimedeltaIndex,
)
_N = 30
_K = 4
UNSIGNED_INT_NUMPY_DTYPES: list[Dtype] = ["uint8", "uint16", "uint32", "uint64"]
UNSIGNED_INT_EA_DTYPES: list[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"]
SIGNED_INT_NUMPY_DTYPES: list[Dtype] = [int, "int8", "int16", "int32", "int64"]
SIGNED_INT_EA_DTYPES: list[Dtype] = ["Int8", "Int16", "Int32", "Int64"]
ALL_INT_NUMPY_DTYPES = UNSIGNED_INT_NUMPY_DTYPES + SIGNED_INT_NUMPY_DTYPES
ALL_INT_EA_DTYPES = UNSIGNED_INT_EA_DTYPES + SIGNED_INT_EA_DTYPES
FLOAT_NUMPY_DTYPES: list[Dtype] = [float, "float32", "float64"]
FLOAT_EA_DTYPES: list[Dtype] = ["Float32", "Float64"]
COMPLEX_DTYPES: list[Dtype] = [complex, "complex64", "complex128"]
STRING_DTYPES: list[Dtype] = [str, "str", "U"]
DATETIME64_DTYPES: list[Dtype] = ["datetime64[ns]", "M8[ns]"]
TIMEDELTA64_DTYPES: list[Dtype] = ["timedelta64[ns]", "m8[ns]"]
BOOL_DTYPES: list[Dtype] = [bool, "bool"]
BYTES_DTYPES: list[Dtype] = [bytes, "bytes"]
OBJECT_DTYPES: list[Dtype] = [object, "object"]
ALL_REAL_NUMPY_DTYPES = FLOAT_NUMPY_DTYPES + ALL_INT_NUMPY_DTYPES
ALL_NUMPY_DTYPES = (
ALL_REAL_NUMPY_DTYPES
+ COMPLEX_DTYPES
+ STRING_DTYPES
+ DATETIME64_DTYPES
+ TIMEDELTA64_DTYPES
+ BOOL_DTYPES
+ OBJECT_DTYPES
+ BYTES_DTYPES
)
NARROW_NP_DTYPES = [
np.float16,
np.float32,
np.int8,
np.int16,
np.int32,
np.uint8,
np.uint16,
np.uint32,
]
ENDIAN = {"little": "<", "big": ">"}[byteorder]
NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA, Decimal("NaN")]
NP_NAT_OBJECTS = [
cls("NaT", unit)
for cls in [np.datetime64, np.timedelta64]
for unit in [
"Y",
"M",
"W",
"D",
"h",
"m",
"s",
"ms",
"us",
"ns",
"ps",
"fs",
"as",
]
]
if not pa_version_under1p01:
import pyarrow as pa
UNSIGNED_INT_PYARROW_DTYPES = [pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()]
SIGNED_INT_PYARROW_DTYPES = [pa.uint8(), pa.int16(), pa.int32(), pa.uint64()]
ALL_INT_PYARROW_DTYPES = UNSIGNED_INT_PYARROW_DTYPES + SIGNED_INT_PYARROW_DTYPES
FLOAT_PYARROW_DTYPES = [pa.float32(), pa.float64()]
STRING_PYARROW_DTYPES = [pa.string(), pa.utf8()]
TIME_PYARROW_DTYPES = [
pa.time32("s"),
pa.time32("ms"),
pa.time64("us"),
pa.time64("ns"),
]
DATE_PYARROW_DTYPES = [pa.date32(), pa.date64()]
DATETIME_PYARROW_DTYPES = [
pa.timestamp(unit=unit, tz=tz)
for unit in ["s", "ms", "us", "ns"]
for tz in [None, "UTC", "US/Pacific", "US/Eastern"]
]
TIMEDELTA_PYARROW_DTYPES = [pa.duration(unit) for unit in ["s", "ms", "us", "ns"]]
BOOL_PYARROW_DTYPES = [pa.bool_()]
# TODO: Add container like pyarrow types:
# https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
ALL_PYARROW_DTYPES = (
ALL_INT_PYARROW_DTYPES
+ FLOAT_PYARROW_DTYPES
+ TIME_PYARROW_DTYPES
+ DATE_PYARROW_DTYPES
+ DATETIME_PYARROW_DTYPES
+ TIMEDELTA_PYARROW_DTYPES
+ BOOL_PYARROW_DTYPES
)
EMPTY_STRING_PATTERN = re.compile("^$")
# set testing_mode
_testing_mode_warnings = (DeprecationWarning, ResourceWarning)
def set_testing_mode() -> None:
# set the testing mode filters
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
if "deprecate" in testing_mode:
for category in _testing_mode_warnings:
warnings.simplefilter("always", category)
def reset_testing_mode() -> None:
# reset the testing mode filters
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
if "deprecate" in testing_mode:
for category in _testing_mode_warnings:
warnings.simplefilter("ignore", category)
set_testing_mode()
def reset_display_options() -> None:
"""
Reset the display options for printing and representing objects.
"""
pd.reset_option("^display.", silent=True)
# -----------------------------------------------------------------------------
# Comparators
def equalContents(arr1, arr2) -> bool:
"""
Checks if the set of unique elements of arr1 and arr2 are equivalent.
"""
return frozenset(arr1) == frozenset(arr2)
def box_expected(expected, box_cls, transpose: bool = True):
"""
Helper function to wrap the expected output of a test in a given box_class.
Parameters
----------
expected : np.ndarray, Index, Series
box_cls : {Index, Series, DataFrame}
Returns
-------
subclass of box_cls
"""
if box_cls is pd.array:
if isinstance(expected, RangeIndex):
# pd.array would return an IntegerArray
expected = PandasArray(np.asarray(expected._values))
else:
expected = pd.array(expected)
elif box_cls is Index:
expected = Index._with_infer(expected)
elif box_cls is Series:
expected = Series(expected)
elif box_cls is DataFrame:
expected = Series(expected).to_frame()
if transpose:
# for vector operations, we need a DataFrame to be a single-row,
# not a single-column, in order to operate against non-DataFrame
# vectors of the same length. But convert to two rows to avoid
# single-row special cases in datetime arithmetic
expected = expected.T
expected = pd.concat([expected] * 2, ignore_index=True)
elif box_cls is np.ndarray or box_cls is np.array:
expected = np.array(expected)
elif box_cls is to_array:
expected = to_array(expected)
else:
raise NotImplementedError(box_cls)
return expected
def to_array(obj):
"""
Similar to pd.array, but does not cast numpy dtypes to nullable dtypes.
"""
# temporary implementation until we get pd.array in place
dtype = getattr(obj, "dtype", None)
if dtype is None:
return np.asarray(obj)
return extract_array(obj, extract_numpy=True)
# -----------------------------------------------------------------------------
# Others
def getCols(k) -> str:
return string.ascii_uppercase[:k]
# make index
def makeStringIndex(k=10, name=None) -> Index:
return Index(rands_array(nchars=10, size=k), name=name)
def makeCategoricalIndex(k=10, n=3, name=None, **kwargs) -> CategoricalIndex:
"""make a length k index or n categories"""
x = rands_array(nchars=4, size=n, replace=False)
return CategoricalIndex(
Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs
)
def makeIntervalIndex(k=10, name=None, **kwargs) -> IntervalIndex:
"""make a length k IntervalIndex"""
x = np.linspace(0, 100, num=(k + 1))
return IntervalIndex.from_breaks(x, name=name, **kwargs)
def makeBoolIndex(k=10, name=None) -> Index:
if k == 1:
return Index([True], name=name)
elif k == 2:
return Index([False, True], name=name)
return Index([False, True] + [False] * (k - 2), name=name)
def makeNumericIndex(k=10, name=None, *, dtype) -> NumericIndex:
dtype = pandas_dtype(dtype)
assert isinstance(dtype, np.dtype)
if is_integer_dtype(dtype):
values = np.arange(k, dtype=dtype)
if is_unsigned_integer_dtype(dtype):
values += 2 ** (dtype.itemsize * 8 - 1)
elif is_float_dtype(dtype):
values = np.random.random_sample(k) - np.random.random_sample(1)
values.sort()
values = values * (10 ** np.random.randint(0, 9))
else:
raise NotImplementedError(f"wrong dtype {dtype}")
return NumericIndex(values, dtype=dtype, name=name)
def makeIntIndex(k=10, name=None) -> Int64Index:
base_idx = makeNumericIndex(k, name=name, dtype="int64")
return Int64Index(base_idx)
def makeUIntIndex(k=10, name=None) -> UInt64Index:
base_idx = makeNumericIndex(k, name=name, dtype="uint64")
return UInt64Index(base_idx)
def makeRangeIndex(k=10, name=None, **kwargs) -> RangeIndex:
return RangeIndex(0, k, 1, name=name, **kwargs)
def makeFloatIndex(k=10, name=None) -> Float64Index:
base_idx = makeNumericIndex(k, name=name, dtype="float64")
return Float64Index(base_idx)
def makeDateIndex(
k: int = 10, freq: Frequency = "B", name=None, **kwargs
) -> DatetimeIndex:
dt = datetime(2000, 1, 1)
dr = bdate_range(dt, periods=k, freq=freq, name=name)
return DatetimeIndex(dr, name=name, **kwargs)
def makeTimedeltaIndex(
k: int = 10, freq: Frequency = "D", name=None, **kwargs
) -> TimedeltaIndex:
return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs)
def makePeriodIndex(k: int = 10, name=None, **kwargs) -> PeriodIndex:
dt = datetime(2000, 1, 1)
return pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs)
def makeMultiIndex(k=10, names=None, **kwargs):
N = (k // 2) + 1
rng = range(N)
mi = MultiIndex.from_product([("foo", "bar"), rng], names=names, **kwargs)
assert len(mi) >= k # GH#38795
return mi[:k]
def index_subclass_makers_generator():
make_index_funcs = [
makeDateIndex,
makePeriodIndex,
makeTimedeltaIndex,
makeRangeIndex,
makeIntervalIndex,
makeCategoricalIndex,
makeMultiIndex,
]
yield from make_index_funcs
def all_timeseries_index_generator(k: int = 10) -> Iterable[Index]:
"""
Generator which can be iterated over to get instances of all the classes
which represent time-series.
Parameters
----------
k: length of each of the index instances
"""
make_index_funcs: list[Callable[..., Index]] = [
makeDateIndex,
makePeriodIndex,
makeTimedeltaIndex,
]
for make_index_func in make_index_funcs:
yield make_index_func(k=k)
# make series
def make_rand_series(name=None, dtype=np.float64) -> Series:
index = makeStringIndex(_N)
data = np.random.randn(_N)
with np.errstate(invalid="ignore"):
data = data.astype(dtype, copy=False)
return Series(data, index=index, name=name)
def makeFloatSeries(name=None) -> Series:
return make_rand_series(name=name)
def makeStringSeries(name=None) -> Series:
return make_rand_series(name=name)
def makeObjectSeries(name=None) -> Series:
data = makeStringIndex(_N)
data = Index(data, dtype=object)
index = makeStringIndex(_N)
return Series(data, index=index, name=name)
def getSeriesData() -> dict[str, Series]:
index = makeStringIndex(_N)
return {c: Series(np.random.randn(_N), index=index) for c in getCols(_K)}
def makeTimeSeries(nper=None, freq: Frequency = "B", name=None) -> Series:
if nper is None:
nper = _N
return Series(
np.random.randn(nper), index=makeDateIndex(nper, freq=freq), name=name
)
def makePeriodSeries(nper=None, name=None) -> Series:
if nper is None:
nper = _N
return Series(np.random.randn(nper), index=makePeriodIndex(nper), name=name)
def getTimeSeriesData(nper=None, freq: Frequency = "B") -> dict[str, Series]:
return {c: makeTimeSeries(nper, freq) for c in getCols(_K)}
def getPeriodData(nper=None) -> dict[str, Series]:
return {c: makePeriodSeries(nper) for c in getCols(_K)}
# make frame
def makeTimeDataFrame(nper=None, freq: Frequency = "B") -> DataFrame:
data = getTimeSeriesData(nper, freq)
return DataFrame(data)
def makeDataFrame() -> DataFrame:
data = getSeriesData()
return DataFrame(data)
def getMixedTypeDict():
index = Index(["a", "b", "c", "d", "e"])
data = {
"A": [0.0, 1.0, 2.0, 3.0, 4.0],
"B": [0.0, 1.0, 0.0, 1.0, 0.0],
"C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
"D": bdate_range("1/1/2009", periods=5),
}
return index, data
def makeMixedDataFrame() -> DataFrame:
return DataFrame(getMixedTypeDict()[1])
def makePeriodFrame(nper=None) -> DataFrame:
data = getPeriodData(nper)
return DataFrame(data)
def makeCustomIndex(
nentries,
nlevels,
prefix: str = "#",
names: bool | str | list[str] | None = False,
ndupe_l=None,
idx_type=None,
) -> Index:
"""
Create an index/multindex with given dimensions, levels, names, etc'
nentries - number of entries in index
nlevels - number of levels (> 1 produces multindex)
prefix - a string prefix for labels
names - (Optional), bool or list of strings. if True will use default
names, if false will use no names, if a list is given, the name of
each level in the index will be taken from the list.
ndupe_l - (Optional), list of ints, the number of rows for which the
label will repeated at the corresponding level, you can specify just
the first few, the rest will use the default ndupe_l of 1.
len(ndupe_l) <= nlevels.
idx_type - "i"/"f"/"s"/"dt"/"p"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s" creates a string
"dt" create a datetime index.
"td" create a datetime index.
if unspecified, string labels will be generated.
"""
if ndupe_l is None:
ndupe_l = [1] * nlevels
assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels
assert names is None or names is False or names is True or len(names) is nlevels
assert idx_type is None or (
idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1
)
if names is True:
# build default names
names = [prefix + str(i) for i in range(nlevels)]
if names is False:
# pass None to index constructor for no name
names = None
# make singleton case uniform
if isinstance(names, str) and nlevels == 1:
names = [names]
# specific 1D index type requested?
idx_func_dict: dict[str, Callable[..., Index]] = {
"i": makeIntIndex,
"f": makeFloatIndex,
"s": makeStringIndex,
"dt": makeDateIndex,
"td": makeTimedeltaIndex,
"p": makePeriodIndex,
}
idx_func = idx_func_dict.get(idx_type)
if idx_func:
idx = idx_func(nentries)
# but we need to fill in the name
if names:
idx.name = names[0]
return idx
elif idx_type is not None:
raise ValueError(
f"{repr(idx_type)} is not a legal value for `idx_type`, "
"use 'i'/'f'/'s'/'dt'/'p'/'td'."
)
if len(ndupe_l) < nlevels:
ndupe_l.extend([1] * (nlevels - len(ndupe_l)))
assert len(ndupe_l) == nlevels
assert all(x > 0 for x in ndupe_l)
list_of_lists = []
for i in range(nlevels):
def keyfunc(x):
import re
numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_")
return [int(num) for num in numeric_tuple]
# build a list of lists to create the index from
div_factor = nentries // ndupe_l[i] + 1
# Deprecated since version 3.9: collections.Counter now supports []. See PEP 585
# and Generic Alias Type.
cnt: Counter[str] = collections.Counter()
for j in range(div_factor):
label = f"{prefix}_l{i}_g{j}"
cnt[label] = ndupe_l[i]
# cute Counter trick
result = sorted(cnt.elements(), key=keyfunc)[:nentries]
list_of_lists.append(result)
tuples = list(zip(*list_of_lists))
# convert tuples to index
if nentries == 1:
# we have a single level of tuples, i.e. a regular Index
name = None if names is None else names[0]
index = Index(tuples[0], name=name)
elif nlevels == 1:
name = None if names is None else names[0]
index = Index((x[0] for x in tuples), name=name)
else:
index = MultiIndex.from_tuples(tuples, names=names)
return index
def makeCustomDataframe(
nrows,
ncols,
c_idx_names: bool | list[str] = True,
r_idx_names: bool | list[str] = True,
c_idx_nlevels=1,
r_idx_nlevels=1,
data_gen_f=None,
c_ndupe_l=None,
r_ndupe_l=None,
dtype=None,
c_idx_type=None,
r_idx_type=None,
) -> DataFrame:
"""
Create a DataFrame using supplied parameters.
Parameters
----------
nrows, ncols - number of data rows/cols
c_idx_names, r_idx_names - False/True/list of strings, yields No names ,
default names or uses the provided names for the levels of the
corresponding index. You can provide a single string when
c_idx_nlevels ==1.
c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex
r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex
data_gen_f - a function f(row,col) which return the data value
at that position, the default generator used yields values of the form
"RxCy" based on position.
c_ndupe_l, r_ndupe_l - list of integers, determines the number
of duplicates for each label at a given level of the corresponding
index. The default `None` value produces a multiplicity of 1 across
all levels, i.e. a unique index. Will accept a partial list of length
N < idx_nlevels, for just the first N levels. If ndupe doesn't divide
nrows/ncol, the last label might have lower multiplicity.
dtype - passed to the DataFrame constructor as is, in case you wish to
have more control in conjunction with a custom `data_gen_f`
r_idx_type, c_idx_type - "i"/"f"/"s"/"dt"/"td".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s" creates a string index
"dt" create a datetime index.
"td" create a timedelta index.
if unspecified, string labels will be generated.
Examples
--------
# 5 row, 3 columns, default names on both, single index on both axis
>> makeCustomDataframe(5,3)
# make the data a random int between 1 and 100
>> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100))
# 2-level multiindex on rows with each label duplicated
# twice on first level, default names on both axis, single
# index on both axis
>> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2])
# DatetimeIndex on row, index with unicode labels on columns
# no names on either axis
>> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False,
r_idx_type="dt",c_idx_type="u")
# 4-level multindex on rows with names provided, 2-level multindex
# on columns with default labels and default names.
>> a=makeCustomDataframe(5,3,r_idx_nlevels=4,
r_idx_names=["FEE","FIH","FOH","FUM"],
c_idx_nlevels=2)
>> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
"""
assert c_idx_nlevels > 0
assert r_idx_nlevels > 0
assert r_idx_type is None or (
r_idx_type in ("i", "f", "s", "dt", "p", "td") and r_idx_nlevels == 1
)
assert c_idx_type is None or (
c_idx_type in ("i", "f", "s", "dt", "p", "td") and c_idx_nlevels == 1
)
columns = makeCustomIndex(
ncols,
nlevels=c_idx_nlevels,
prefix="C",
names=c_idx_names,
ndupe_l=c_ndupe_l,
idx_type=c_idx_type,
)
index = makeCustomIndex(
nrows,
nlevels=r_idx_nlevels,
prefix="R",
names=r_idx_names,
ndupe_l=r_ndupe_l,
idx_type=r_idx_type,
)
# by default, generate data based on location
if data_gen_f is None:
data_gen_f = lambda r, c: f"R{r}C{c}"
data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)]
return DataFrame(data, index, columns, dtype=dtype)
def _create_missing_idx(nrows, ncols, density: float, random_state=None):
if random_state is None:
random_state = np.random
else:
random_state = np.random.RandomState(random_state)
# below is cribbed from scipy.sparse
size = round((1 - density) * nrows * ncols)
# generate a few more to ensure unique values
min_rows = 5
fac = 1.02
extra_size = min(size + min_rows, fac * size)
def _gen_unique_rand(rng, _extra_size):
ind = rng.rand(int(_extra_size))
return np.unique(np.floor(ind * nrows * ncols))[:size]
ind = _gen_unique_rand(random_state, extra_size)
while ind.size < size:
extra_size *= 1.05
ind = _gen_unique_rand(random_state, extra_size)
j = np.floor(ind * 1.0 / nrows).astype(int)
i = (ind - j * nrows).astype(int)
return i.tolist(), j.tolist()
def makeMissingDataframe(density: float = 0.9, random_state=None) -> DataFrame:
df = makeDataFrame()
i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state)
df.values[i, j] = np.nan
return df
class SubclassedSeries(Series):
_metadata = ["testattr", "name"]
@property
def _constructor(self):
# For testing, those properties return a generic callable, and not
# the actual class. In this case that is equivalent, but it is to
# ensure we don't rely on the property returning a class
# See https://github.com/pandas-dev/pandas/pull/46018 and
# https://github.com/pandas-dev/pandas/issues/32638 and linked issues
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
@property
def _constructor_expanddim(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
class SubclassedDataFrame(DataFrame):
_metadata = ["testattr"]
@property
def _constructor(self):
return lambda *args, **kwargs: SubclassedDataFrame(*args, **kwargs)
@property
def _constructor_sliced(self):
return lambda *args, **kwargs: SubclassedSeries(*args, **kwargs)
class SubclassedCategorical(Categorical):
@property
def _constructor(self):
return SubclassedCategorical
def _make_skipna_wrapper(alternative, skipna_alternative=None):
"""
Create a function for calling on an array.
Parameters
----------
alternative : function
The function to be called on the array with no NaNs.
Only used when 'skipna_alternative' is None.
skipna_alternative : function
The function to be called on the original array
Returns
-------
function
"""
if skipna_alternative:
def skipna_wrapper(x):
return skipna_alternative(x.values)
else:
def skipna_wrapper(x):
nona = x.dropna()
if len(nona) == 0:
return np.nan
return alternative(nona)
return skipna_wrapper
def convert_rows_list_to_csv_str(rows_list: list[str]) -> str:
"""
Convert list of CSV rows to single CSV-formatted string for current OS.
This method is used for creating expected value of to_csv() method.
Parameters
----------
rows_list : List[str]
Each element represents the row of csv.
Returns
-------
str
Expected output of to_csv() in current OS.
"""
sep = os.linesep
return sep.join(rows_list) + sep
def external_error_raised(expected_exception: type[Exception]) -> ContextManager:
"""
Helper function to mark pytest.raises that have an external error message.
Parameters
----------
expected_exception : Exception
Expected error to raise.
Returns
-------
Callable
Regular `pytest.raises` function with `match` equal to `None`.
"""
import pytest
return pytest.raises(expected_exception, match=None) # noqa: PDF010
cython_table = pd.core.common._cython_table.items()
def get_cython_table_params(ndframe, func_names_and_expected):
"""
Combine frame, functions from com._cython_table
keys and expected result.
Parameters
----------
ndframe : DataFrame or Series
func_names_and_expected : Sequence of two items
The first item is a name of a NDFrame method ('sum', 'prod') etc.
The second item is the expected return value.
Returns
-------
list
List of three items (DataFrame, function, expected result)
"""
results = []
for func_name, expected in func_names_and_expected:
results.append((ndframe, func_name, expected))
results += [
(ndframe, func, expected)
for func, name in cython_table
if name == func_name
]
return results
def get_op_from_name(op_name: str) -> Callable:
"""
The operator function for a given op name.
Parameters
----------
op_name : str
The op name, in form of "add" or "__add__".
Returns
-------
function
A function performing the operation.
"""
short_opname = op_name.strip("_")
try:
op = getattr(operator, short_opname)
except AttributeError:
# Assume it is the reverse operator
rop = getattr(operator, short_opname[1:])
op = lambda x, y: rop(y, x)
return op
# -----------------------------------------------------------------------------
# Indexing test helpers
def getitem(x):
return x
def setitem(x):
return x
def loc(x):
return x.loc
def iloc(x):
return x.iloc
def at(x):
return x.at
def iat(x):
return x.iat
# -----------------------------------------------------------------------------
def shares_memory(left, right) -> bool:
"""
Pandas-compat for np.shares_memory.
"""