-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathsparse.rst
273 lines (177 loc) · 7.44 KB
/
sparse.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
.. _sparse:
{{ header }}
**********************
Sparse data structures
**********************
pandas provides data structures for efficiently storing sparse data.
These are not necessarily sparse in the typical "mostly 0". Rather, you can view these
objects as being "compressed" where any data matching a specific value (``NaN`` / missing value, though any value
can be chosen, including 0) is omitted. The compressed values are not actually stored in the array.
.. ipython:: python
arr = np.random.randn(10)
arr[2:-2] = np.nan
ts = pd.Series(pd.arrays.SparseArray(arr))
ts
Notice the dtype, ``Sparse[float64, nan]``. The ``nan`` means that elements in the
array that are ``nan`` aren't actually stored, only the non-``nan`` elements are.
Those non-``nan`` elements have a ``float64`` dtype.
The sparse objects exist for memory efficiency reasons. Suppose you had a
large, mostly NA :class:`DataFrame`:
.. ipython:: python
df = pd.DataFrame(np.random.randn(10000, 4))
df.iloc[:9998] = np.nan
sdf = df.astype(pd.SparseDtype("float", np.nan))
sdf.head()
sdf.dtypes
sdf.sparse.density
As you can see, the density (% of values that have not been "compressed") is
extremely low. This sparse object takes up much less memory on disk (pickled)
and in the Python interpreter.
.. ipython:: python
'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3)
'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3)
Functionally, their behavior should be nearly
identical to their dense counterparts.
.. _sparse.array:
SparseArray
-----------
:class:`arrays.SparseArray` is a :class:`~pandas.api.extensions.ExtensionArray`
for storing an array of sparse values (see :ref:`basics.dtypes` for more
on extension arrays). It is a 1-dimensional ndarray-like object storing
only values distinct from the ``fill_value``:
.. ipython:: python
arr = np.random.randn(10)
arr[2:5] = np.nan
arr[7:8] = np.nan
sparr = pd.arrays.SparseArray(arr)
sparr
A sparse array can be converted to a regular (dense) ndarray with :meth:`numpy.asarray`
.. ipython:: python
np.asarray(sparr)
.. _sparse.dtype:
SparseDtype
-----------
The :attr:`SparseArray.dtype` property stores two pieces of information
1. The dtype of the non-sparse values
2. The scalar fill value
.. ipython:: python
sparr.dtype
A :class:`SparseDtype` may be constructed by passing only a dtype
.. ipython:: python
pd.SparseDtype(np.dtype('datetime64[ns]'))
in which case a default fill value will be used (for NumPy dtypes this is often the
"missing" value for that dtype). To override this default an explicit fill value may be
passed instead
.. ipython:: python
pd.SparseDtype(np.dtype('datetime64[ns]'),
fill_value=pd.Timestamp('2017-01-01'))
Finally, the string alias ``'Sparse[dtype]'`` may be used to specify a sparse dtype
in many places
.. ipython:: python
pd.array([1, 0, 0, 2], dtype='Sparse[int]')
.. _sparse.accessor:
Sparse accessor
---------------
pandas provides a ``.sparse`` accessor, similar to ``.str`` for string data, ``.cat``
for categorical data, and ``.dt`` for datetime-like data. This namespace provides
attributes and methods that are specific to sparse data.
.. ipython:: python
s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")
s.sparse.density
s.sparse.fill_value
This accessor is available only on data with ``SparseDtype``, and on the :class:`Series`
class itself for creating a Series with sparse data from a scipy COO matrix with.
A ``.sparse`` accessor has been added for :class:`DataFrame` as well.
See :ref:`api.frame.sparse` for more.
.. _sparse.calculation:
Sparse calculation
------------------
You can apply NumPy `ufuncs <https://numpy.org/doc/stable/reference/ufuncs.html>`_
to :class:`arrays.SparseArray` and get a :class:`arrays.SparseArray` as a result.
.. ipython:: python
arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan])
np.abs(arr)
The *ufunc* is also applied to ``fill_value``. This is needed to get
the correct dense result.
.. ipython:: python
arr = pd.arrays.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
np.abs(arr)
np.abs(arr).to_dense()
**Conversion**
To convert data from sparse to dense, use the ``.sparse`` accessors
.. ipython:: python
sdf.sparse.to_dense()
From dense to sparse, use :meth:`DataFrame.astype` with a :class:`SparseDtype`.
.. ipython:: python
dense = pd.DataFrame({"A": [1, 0, 0, 1]})
dtype = pd.SparseDtype(int, fill_value=0)
dense.astype(dtype)
.. _sparse.scipysparse:
Interaction with *scipy.sparse*
-------------------------------
Use :meth:`DataFrame.sparse.from_spmatrix` to create a :class:`DataFrame` with sparse values from a sparse matrix.
.. ipython:: python
from scipy.sparse import csr_matrix
arr = np.random.random(size=(1000, 5))
arr[arr < .9] = 0
sp_arr = csr_matrix(arr)
sp_arr
sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr)
sdf.head()
sdf.dtypes
All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed.
To convert back to sparse SciPy matrix in COO format, you can use the :meth:`DataFrame.sparse.to_coo` method:
.. ipython:: python
sdf.sparse.to_coo()
:meth:`Series.sparse.to_coo` is implemented for transforming a :class:`Series` with sparse values indexed by a :class:`MultiIndex` to a :class:`scipy.sparse.coo_matrix`.
The method requires a :class:`MultiIndex` with two or more levels.
.. ipython:: python
s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples(
[
(1, 2, "a", 0),
(1, 2, "a", 1),
(1, 1, "b", 0),
(1, 1, "b", 1),
(2, 1, "b", 0),
(2, 1, "b", 1),
],
names=["A", "B", "C", "D"],
)
ss = s.astype('Sparse')
ss
In the example below, we transform the :class:`Series` to a sparse representation of a 2-d array by specifying that the first and second ``MultiIndex`` levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.
.. ipython:: python
A, rows, columns = ss.sparse.to_coo(
row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True
)
A
A.todense()
rows
columns
Specifying different row and column labels (and not sorting them) yields a different sparse matrix:
.. ipython:: python
A, rows, columns = ss.sparse.to_coo(
row_levels=["A", "B", "C"], column_levels=["D"], sort_labels=False
)
A
A.todense()
rows
columns
A convenience method :meth:`Series.sparse.from_coo` is implemented for creating a :class:`Series` with sparse values from a ``scipy.sparse.coo_matrix``.
.. ipython:: python
from scipy import sparse
A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4))
A
A.todense()
The default behaviour (with ``dense_index=False``) simply returns a :class:`Series` containing
only the non-null entries.
.. ipython:: python
ss = pd.Series.sparse.from_coo(A)
ss
Specifying ``dense_index=True`` will result in an index that is the Cartesian product of the
row and columns coordinates of the matrix. Note that this will consume a significant amount of memory
(relative to ``dense_index=False``) if the sparse matrix is large (and sparse) enough.
.. ipython:: python
ss_dense = pd.Series.sparse.from_coo(A, dense_index=True)
ss_dense