-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathobject_array.py
465 lines (368 loc) · 14.4 KB
/
object_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from __future__ import annotations
from collections.abc import Callable # noqa: PDF001
import re
import textwrap
import unicodedata
import numpy as np
import pandas._libs.lib as lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas._typing import (
Dtype,
Scalar,
)
from pandas.core.dtypes.common import is_scalar
from pandas.core.dtypes.missing import isna
from pandas.core.series import Series
from pandas.core.strings.base import BaseStringArrayMethods
class ObjectStringArrayMixin(BaseStringArrayMethods):
"""
String Methods operating on object-dtype ndarrays.
"""
_str_na_value = np.nan
def __len__(self):
# For typing, _str_map relies on the object being sized.
raise NotImplementedError
def _str_map(
self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True
):
"""
Map a callable over valid elements of the array.
Parameters
----------
f : Callable
A function to call on each non-NA element.
na_value : Scalar, optional
The value to set for NA values. Might also be used for the
fill value if the callable `f` raises an exception.
This defaults to ``self._str_na_value`` which is ``np.nan``
for object-dtype and Categorical and ``pd.NA`` for StringArray.
dtype : Dtype, optional
The dtype of the result array.
convert : bool, default True
Whether to call `maybe_convert_objects` on the resulting ndarray
"""
if dtype is None:
dtype = np.dtype("object")
if na_value is None:
na_value = self._str_na_value
if not len(self):
# error: Argument 1 to "ndarray" has incompatible type "int";
# expected "Sequence[int]"
return np.ndarray(0, dtype=dtype) # type: ignore[arg-type]
arr = np.asarray(self, dtype=object)
mask = isna(arr)
map_convert = convert and not np.all(mask)
try:
result = lib.map_infer_mask(arr, f, mask.view(np.uint8), map_convert)
except (TypeError, AttributeError) as e:
# Reraise the exception if callable `f` got wrong number of args.
# The user may want to be warned by this, instead of getting NaN
p_err = (
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
r"(?(3)required )positional arguments?"
)
if len(e.args) >= 1 and re.search(p_err, e.args[0]):
# FIXME: this should be totally avoidable
raise e
def g(x):
# This type of fallback behavior can be removed once
# we remove object-dtype .str accessor.
try:
return f(x)
except (TypeError, AttributeError):
return na_value
return self._str_map(g, na_value=na_value, dtype=dtype)
if not isinstance(result, np.ndarray):
return result
if na_value is not np.nan:
np.putmask(result, mask, na_value)
if convert and result.dtype == object:
result = lib.maybe_convert_objects(result)
return result
def _str_count(self, pat, flags=0):
regex = re.compile(pat, flags=flags)
f = lambda x: len(regex.findall(x))
return self._str_map(f, dtype="int64")
def _str_pad(self, width, side="left", fillchar=" "):
if side == "left":
f = lambda x: x.rjust(width, fillchar)
elif side == "right":
f = lambda x: x.ljust(width, fillchar)
elif side == "both":
f = lambda x: x.center(width, fillchar)
else: # pragma: no cover
raise ValueError("Invalid side")
return self._str_map(f)
def _str_contains(self, pat, case=True, flags=0, na=np.nan, regex: bool = True):
if regex:
if not case:
flags |= re.IGNORECASE
pat = re.compile(pat, flags=flags)
f = lambda x: pat.search(x) is not None
else:
if case:
f = lambda x: pat in x
else:
upper_pat = pat.upper()
f = lambda x: upper_pat in x.upper()
return self._str_map(f, na, dtype=np.dtype("bool"))
def _str_startswith(self, pat, na=None):
f = lambda x: x.startswith(pat)
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_endswith(self, pat, na=None):
f = lambda x: x.endswith(pat)
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_replace(
self,
pat: str | re.Pattern,
repl: str | Callable,
n: int = -1,
case: bool = True,
flags: int = 0,
regex: bool = True,
):
if case is False:
# add case flag, if provided
flags |= re.IGNORECASE
if regex or flags or callable(repl):
if not isinstance(pat, re.Pattern):
if regex is False:
pat = re.escape(pat)
pat = re.compile(pat, flags=flags)
n = n if n >= 0 else 0
f = lambda x: pat.sub(repl=repl, string=x, count=n)
else:
f = lambda x: x.replace(pat, repl, n)
return self._str_map(f, dtype=str)
def _str_repeat(self, repeats):
if is_scalar(repeats):
def scalar_rep(x):
try:
return bytes.__mul__(x, repeats)
except TypeError:
return str.__mul__(x, repeats)
return self._str_map(scalar_rep, dtype=str)
else:
from pandas.core.arrays.string_ import BaseStringArray
def rep(x, r):
if x is libmissing.NA:
return x
try:
return bytes.__mul__(x, r)
except TypeError:
return str.__mul__(x, r)
repeats = np.asarray(repeats, dtype=object)
result = libops.vec_binop(np.asarray(self), repeats, rep)
if isinstance(self, BaseStringArray):
# Not going through map, so we have to do this here.
result = type(self)._from_sequence(result)
return result
def _str_match(
self, pat: str, case: bool = True, flags: int = 0, na: Scalar = None
):
if not case:
flags |= re.IGNORECASE
regex = re.compile(pat, flags=flags)
f = lambda x: regex.match(x) is not None
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_fullmatch(
self,
pat: str | re.Pattern,
case: bool = True,
flags: int = 0,
na: Scalar = None,
):
if not case:
flags |= re.IGNORECASE
regex = re.compile(pat, flags=flags)
f = lambda x: regex.fullmatch(x) is not None
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_encode(self, encoding, errors="strict"):
f = lambda x: x.encode(encoding, errors=errors)
return self._str_map(f, dtype=object)
def _str_find(self, sub, start=0, end=None):
return self._str_find_(sub, start, end, side="left")
def _str_rfind(self, sub, start=0, end=None):
return self._str_find_(sub, start, end, side="right")
def _str_find_(self, sub, start, end, side):
if side == "left":
method = "find"
elif side == "right":
method = "rfind"
else: # pragma: no cover
raise ValueError("Invalid side")
if end is None:
f = lambda x: getattr(x, method)(sub, start)
else:
f = lambda x: getattr(x, method)(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_findall(self, pat, flags=0):
regex = re.compile(pat, flags=flags)
return self._str_map(regex.findall, dtype="object")
def _str_get(self, i):
def f(x):
if isinstance(x, dict):
return x.get(i)
elif len(x) > i >= -len(x):
return x[i]
return self._str_na_value
return self._str_map(f)
def _str_index(self, sub, start=0, end=None):
if end:
f = lambda x: x.index(sub, start, end)
else:
f = lambda x: x.index(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_rindex(self, sub, start=0, end=None):
if end:
f = lambda x: x.rindex(sub, start, end)
else:
f = lambda x: x.rindex(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_join(self, sep):
return self._str_map(sep.join)
def _str_partition(self, sep, expand):
result = self._str_map(lambda x: x.partition(sep), dtype="object")
return result
def _str_rpartition(self, sep, expand):
return self._str_map(lambda x: x.rpartition(sep), dtype="object")
def _str_len(self):
return self._str_map(len, dtype="int64")
def _str_slice(self, start=None, stop=None, step=None):
obj = slice(start, stop, step)
return self._str_map(lambda x: x[obj])
def _str_slice_replace(self, start=None, stop=None, repl=None):
if repl is None:
repl = ""
def f(x):
if x[start:stop] == "":
local_stop = start
else:
local_stop = stop
y = ""
if start is not None:
y += x[:start]
y += repl
if stop is not None:
y += x[local_stop:]
return y
return self._str_map(f)
def _str_split(self, pat=None, n=-1, expand=False):
if pat is None:
if n is None or n == 0:
n = -1
f = lambda x: x.split(pat, n)
else:
if len(pat) == 1:
if n is None or n == 0:
n = -1
f = lambda x: x.split(pat, n)
else:
if n is None or n == -1:
n = 0
regex = re.compile(pat)
f = lambda x: regex.split(x, maxsplit=n)
return self._str_map(f, dtype=object)
def _str_rsplit(self, pat=None, n=-1):
if n is None or n == 0:
n = -1
f = lambda x: x.rsplit(pat, n)
return self._str_map(f, dtype="object")
def _str_translate(self, table):
return self._str_map(lambda x: x.translate(table))
def _str_wrap(self, width, **kwargs):
kwargs["width"] = width
tw = textwrap.TextWrapper(**kwargs)
return self._str_map(lambda s: "\n".join(tw.wrap(s)))
def _str_get_dummies(self, sep="|"):
from pandas import Series
arr = Series(self).fillna("")
try:
arr = sep + arr + sep
except TypeError:
arr = sep + arr.astype(str) + sep
tags: set[str] = set()
for ts in Series(arr).str.split(sep):
tags.update(ts)
tags2 = sorted(tags - {""})
dummies = np.empty((len(arr), len(tags2)), dtype=np.int64)
for i, t in enumerate(tags2):
pat = sep + t + sep
dummies[:, i] = lib.map_infer(arr.to_numpy(), lambda x: pat in x)
return dummies, tags2
def _str_upper(self):
return self._str_map(lambda x: x.upper())
def _str_isalnum(self):
return self._str_map(str.isalnum, dtype="bool")
def _str_isalpha(self):
return self._str_map(str.isalpha, dtype="bool")
def _str_isdecimal(self):
return self._str_map(str.isdecimal, dtype="bool")
def _str_isdigit(self):
return self._str_map(str.isdigit, dtype="bool")
def _str_islower(self):
return self._str_map(str.islower, dtype="bool")
def _str_isnumeric(self):
return self._str_map(str.isnumeric, dtype="bool")
def _str_isspace(self):
return self._str_map(str.isspace, dtype="bool")
def _str_istitle(self):
return self._str_map(str.istitle, dtype="bool")
def _str_isupper(self):
return self._str_map(str.isupper, dtype="bool")
def _str_capitalize(self):
return self._str_map(str.capitalize)
def _str_casefold(self):
return self._str_map(str.casefold)
def _str_title(self):
return self._str_map(str.title)
def _str_swapcase(self):
return self._str_map(str.swapcase)
def _str_lower(self):
return self._str_map(str.lower)
def _str_normalize(self, form):
f = lambda x: unicodedata.normalize(form, x)
return self._str_map(f)
def _str_strip(self, to_strip=None):
return self._str_map(lambda x: x.strip(to_strip))
def _str_lstrip(self, to_strip=None):
return self._str_map(lambda x: x.lstrip(to_strip))
def _str_rstrip(self, to_strip=None):
return self._str_map(lambda x: x.rstrip(to_strip))
def _str_removeprefix(self, prefix: str) -> Series:
# outstanding question on whether to use native methods for users
# on Python 3.9+ https://git.io/JE9QK, in which case we could do
# return self._str_map(str.removeprefix)
def removeprefix(text: str) -> str:
if text.startswith(prefix):
return text[len(prefix) :]
return text
return self._str_map(removeprefix)
def _str_removesuffix(self, suffix: str) -> Series:
# this could be used on Python 3.9+
# f = lambda x: x.removesuffix(suffix)
# return self._str_map(str.removesuffix)
def removesuffix(text: str) -> str:
if text.endswith(suffix):
return text[: len(suffix)]
return text
return self._str_map(removesuffix)
def _str_extract(self, pat: str, flags: int = 0, expand: bool = True):
regex = re.compile(pat, flags=flags)
na_value = self._str_na_value
if not expand:
def g(x):
m = regex.search(x)
return m.groups()[0] if m else na_value
return self._str_map(g, convert=False)
empty_row = [na_value] * regex.groups
def f(x):
if not isinstance(x, str):
return empty_row
m = regex.search(x)
if m:
return [na_value if item is None else item for item in m.groups()]
else:
return empty_row
return [f(val) for val in np.asarray(self)]