-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathreshape.py
973 lines (789 loc) · 32.5 KB
/
reshape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
# pylint: disable=E1101,E1103
# pylint: disable=W0703,W0622,W0613,W0201
from pandas.compat import range, text_type, zip
from pandas import compat
from functools import partial
import itertools
import numpy as np
from pandas.core.dtypes.common import (
_ensure_platform_int,
is_list_like, is_bool_dtype,
needs_i8_conversion, is_sparse, is_object_dtype)
from pandas.core.dtypes.cast import maybe_promote
from pandas.core.dtypes.missing import notna
from pandas.core.series import Series
from pandas.core.frame import DataFrame
from pandas.core.sparse.api import SparseDataFrame, SparseSeries
from pandas.core.sparse.array import SparseArray
from pandas._libs.sparse import IntIndex
from pandas.core.categorical import Categorical, _factorize_from_iterable
from pandas.core.sorting import (get_group_index, get_compressed_ids,
compress_group_index, decons_obs_group_ids)
import pandas.core.algorithms as algos
from pandas._libs import algos as _algos, reshape as _reshape
from pandas.core.index import Index, MultiIndex, _get_na_value
class _Unstacker(object):
"""
Helper class to unstack data / pivot with multi-level index
Parameters
----------
level : int or str, default last level
Level to "unstack". Accepts a name for the level.
Examples
--------
>>> import pandas as pd
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
... ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index)
>>> s
one a 1
b 2
two a 3
b 4
dtype: int64
>>> s.unstack(level=-1)
a b
one 1 2
two 3 4
>>> s.unstack(level=0)
one two
a 1 3
b 2 4
Returns
-------
unstacked : DataFrame
"""
def __init__(self, values, index, level=-1, value_columns=None,
fill_value=None):
self.is_categorical = None
self.is_sparse = is_sparse(values)
if values.ndim == 1:
if isinstance(values, Categorical):
self.is_categorical = values
values = np.array(values)
elif self.is_sparse:
# XXX: Makes SparseArray *dense*, but it's supposedly
# a single column at a time, so it's "doable"
values = values.values
values = values[:, np.newaxis]
self.values = values
self.value_columns = value_columns
self.fill_value = fill_value
if value_columns is None and values.shape[1] != 1: # pragma: no cover
raise ValueError('must pass column labels for multi-column data')
self.index = index
self.level = self.index._get_level_number(level)
# when index includes `nan`, need to lift levels/strides by 1
self.lift = 1 if -1 in self.index.labels[self.level] else 0
self.new_index_levels = list(index.levels)
self.new_index_names = list(index.names)
self.removed_name = self.new_index_names.pop(self.level)
self.removed_level = self.new_index_levels.pop(self.level)
self._make_sorted_values_labels()
self._make_selectors()
def _make_sorted_values_labels(self):
v = self.level
labs = list(self.index.labels)
levs = list(self.index.levels)
to_sort = labs[:v] + labs[v + 1:] + [labs[v]]
sizes = [len(x) for x in levs[:v] + levs[v + 1:] + [levs[v]]]
comp_index, obs_ids = get_compressed_ids(to_sort, sizes)
ngroups = len(obs_ids)
indexer = _algos.groupsort_indexer(comp_index, ngroups)[0]
indexer = _ensure_platform_int(indexer)
self.sorted_values = algos.take_nd(self.values, indexer, axis=0)
self.sorted_labels = [l.take(indexer) for l in to_sort]
def _make_selectors(self):
new_levels = self.new_index_levels
# make the mask
remaining_labels = self.sorted_labels[:-1]
level_sizes = [len(x) for x in new_levels]
comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes)
ngroups = len(obs_ids)
comp_index = _ensure_platform_int(comp_index)
stride = self.index.levshape[self.level] + self.lift
self.full_shape = ngroups, stride
selector = self.sorted_labels[-1] + stride * comp_index + self.lift
mask = np.zeros(np.prod(self.full_shape), dtype=bool)
mask.put(selector, True)
if mask.sum() < len(self.index):
raise ValueError('Index contains duplicate entries, '
'cannot reshape')
self.group_index = comp_index
self.mask = mask
self.unique_groups = obs_ids
self.compressor = comp_index.searchsorted(np.arange(ngroups))
def get_result(self):
# TODO: find a better way than this masking business
values, value_mask = self.get_new_values()
columns = self.get_new_columns()
index = self.get_new_index()
# filter out missing levels
if values.shape[1] > 0:
col_inds, obs_ids = compress_group_index(self.sorted_labels[-1])
# rare case, level values not observed
if len(obs_ids) < self.full_shape[1]:
inds = (value_mask.sum(0) > 0).nonzero()[0]
values = algos.take_nd(values, inds, axis=1)
columns = columns[inds]
# may need to coerce categoricals here
if self.is_categorical is not None:
categories = self.is_categorical.categories
ordered = self.is_categorical.ordered
values = [Categorical(values[:, i], categories=categories,
ordered=ordered)
for i in range(values.shape[-1])]
klass = SparseDataFrame if self.is_sparse else DataFrame
return klass(values, index=index, columns=columns)
def get_new_values(self):
values = self.values
# place the values
length, width = self.full_shape
stride = values.shape[1]
result_width = width * stride
result_shape = (length, result_width)
mask = self.mask
mask_all = mask.all()
# we can simply reshape if we don't have a mask
if mask_all and len(values):
new_values = (self.sorted_values
.reshape(length, width, stride)
.swapaxes(1, 2)
.reshape(result_shape)
)
new_mask = np.ones(result_shape, dtype=bool)
return new_values, new_mask
# if our mask is all True, then we can use our existing dtype
if mask_all:
dtype = values.dtype
new_values = np.empty(result_shape, dtype=dtype)
else:
dtype, fill_value = maybe_promote(values.dtype, self.fill_value)
new_values = np.empty(result_shape, dtype=dtype)
new_values.fill(fill_value)
new_mask = np.zeros(result_shape, dtype=bool)
name = np.dtype(dtype).name
sorted_values = self.sorted_values
# we need to convert to a basic dtype
# and possibly coerce an input to our output dtype
# e.g. ints -> floats
if needs_i8_conversion(values):
sorted_values = sorted_values.view('i8')
new_values = new_values.view('i8')
name = 'int64'
elif is_bool_dtype(values):
sorted_values = sorted_values.astype('object')
new_values = new_values.astype('object')
name = 'object'
else:
sorted_values = sorted_values.astype(name, copy=False)
# fill in our values & mask
f = getattr(_reshape, "unstack_{name}".format(name=name))
f(sorted_values,
mask.view('u1'),
stride,
length,
width,
new_values,
new_mask.view('u1'))
# reconstruct dtype if needed
if needs_i8_conversion(values):
new_values = new_values.view(values.dtype)
return new_values, new_mask
def get_new_columns(self):
if self.value_columns is None:
if self.lift == 0:
return self.removed_level
lev = self.removed_level
return lev.insert(0, _get_na_value(lev.dtype.type))
stride = len(self.removed_level) + self.lift
width = len(self.value_columns)
propagator = np.repeat(np.arange(width), stride)
if isinstance(self.value_columns, MultiIndex):
new_levels = self.value_columns.levels + (self.removed_level,)
new_names = self.value_columns.names + (self.removed_name,)
new_labels = [lab.take(propagator)
for lab in self.value_columns.labels]
else:
new_levels = [self.value_columns, self.removed_level]
new_names = [self.value_columns.name, self.removed_name]
new_labels = [propagator]
new_labels.append(np.tile(np.arange(stride) - self.lift, width))
return MultiIndex(levels=new_levels, labels=new_labels,
names=new_names, verify_integrity=False)
def get_new_index(self):
result_labels = [lab.take(self.compressor)
for lab in self.sorted_labels[:-1]]
# construct the new index
if len(self.new_index_levels) == 1:
lev, lab = self.new_index_levels[0], result_labels[0]
if (lab == -1).any():
lev = lev.insert(len(lev), _get_na_value(lev.dtype.type))
return lev.take(lab)
return MultiIndex(levels=self.new_index_levels, labels=result_labels,
names=self.new_index_names, verify_integrity=False)
def _unstack_multiple(data, clocs, fill_value=None):
if len(clocs) == 0:
return data
# NOTE: This doesn't deal with hierarchical columns yet
index = data.index
clocs = [index._get_level_number(i) for i in clocs]
rlocs = [i for i in range(index.nlevels) if i not in clocs]
clevels = [index.levels[i] for i in clocs]
clabels = [index.labels[i] for i in clocs]
cnames = [index.names[i] for i in clocs]
rlevels = [index.levels[i] for i in rlocs]
rlabels = [index.labels[i] for i in rlocs]
rnames = [index.names[i] for i in rlocs]
shape = [len(x) for x in clevels]
group_index = get_group_index(clabels, shape, sort=False, xnull=False)
comp_ids, obs_ids = compress_group_index(group_index, sort=False)
recons_labels = decons_obs_group_ids(comp_ids, obs_ids, shape, clabels,
xnull=False)
if rlocs == []:
# Everything is in clocs, so the dummy df has a regular index
dummy_index = Index(obs_ids, name='__placeholder__')
else:
dummy_index = MultiIndex(levels=rlevels + [obs_ids],
labels=rlabels + [comp_ids],
names=rnames + ['__placeholder__'],
verify_integrity=False)
if isinstance(data, Series):
dummy = data.copy()
dummy.index = dummy_index
unstacked = dummy.unstack('__placeholder__', fill_value=fill_value)
new_levels = clevels
new_names = cnames
new_labels = recons_labels
else:
if isinstance(data.columns, MultiIndex):
result = data
for i in range(len(clocs)):
val = clocs[i]
result = result.unstack(val)
clocs = [v if i > v else v - 1 for v in clocs]
return result
dummy = data.copy()
dummy.index = dummy_index
unstacked = dummy.unstack('__placeholder__', fill_value=fill_value)
if isinstance(unstacked, Series):
unstcols = unstacked.index
else:
unstcols = unstacked.columns
new_levels = [unstcols.levels[0]] + clevels
new_names = [data.columns.name] + cnames
new_labels = [unstcols.labels[0]]
for rec in recons_labels:
new_labels.append(rec.take(unstcols.labels[-1]))
new_columns = MultiIndex(levels=new_levels, labels=new_labels,
names=new_names, verify_integrity=False)
if isinstance(unstacked, Series):
unstacked.index = new_columns
else:
unstacked.columns = new_columns
return unstacked
def pivot(self, index=None, columns=None, values=None):
"""
See DataFrame.pivot
"""
if values is None:
cols = [columns] if index is None else [index, columns]
append = index is None
indexed = self.set_index(cols, append=append)
return indexed.unstack(columns)
else:
if index is None:
index = self.index
else:
index = self[index]
indexed = Series(self[values].values,
index=MultiIndex.from_arrays([index, self[columns]]))
return indexed.unstack(columns)
def pivot_simple(index, columns, values):
"""
Produce 'pivot' table based on 3 columns of this DataFrame.
Uses unique values from index / columns and fills with values.
Parameters
----------
index : ndarray
Labels to use to make new frame's index
columns : ndarray
Labels to use to make new frame's columns
values : ndarray
Values to use for populating new frame's values
Notes
-----
Obviously, all 3 of the input arguments must have the same length
Returns
-------
DataFrame
See also
--------
DataFrame.pivot_table : generalization of pivot that can handle
duplicate values for one index/column pair
"""
if (len(index) != len(columns)) or (len(columns) != len(values)):
raise AssertionError('Length of index, columns, and values must be the'
' same')
if len(index) == 0:
return DataFrame(index=[])
hindex = MultiIndex.from_arrays([index, columns])
series = Series(values.ravel(), index=hindex)
series = series.sort_index(level=0)
return series.unstack()
def _slow_pivot(index, columns, values):
"""
Produce 'pivot' table based on 3 columns of this DataFrame.
Uses unique values from index / columns and fills with values.
Parameters
----------
index : string or object
Column name to use to make new frame's index
columns : string or object
Column name to use to make new frame's columns
values : string or object
Column name to use for populating new frame's values
Could benefit from some Cython here.
"""
tree = {}
for i, (idx, col) in enumerate(zip(index, columns)):
if col not in tree:
tree[col] = {}
branch = tree[col]
branch[idx] = values[i]
return DataFrame(tree)
def unstack(obj, level, fill_value=None):
if isinstance(level, (tuple, list)):
if len(level) != 1:
# _unstack_multiple only handles MultiIndexes,
# and isn't needed for a single level
return _unstack_multiple(obj, level, fill_value=fill_value)
else:
level = level[0]
if isinstance(obj, DataFrame):
if isinstance(obj.index, MultiIndex):
return _unstack_frame(obj, level, fill_value=fill_value)
else:
return obj.T.stack(dropna=False)
else:
unstacker = _Unstacker(obj.values, obj.index, level=level,
fill_value=fill_value)
return unstacker.get_result()
def _unstack_frame(obj, level, fill_value=None):
if obj._is_mixed_type:
unstacker = partial(_Unstacker, index=obj.index,
level=level, fill_value=fill_value)
blocks = obj._data.unstack(unstacker)
klass = type(obj)
return klass(blocks)
else:
unstacker = _Unstacker(obj.values, obj.index, level=level,
value_columns=obj.columns,
fill_value=fill_value)
return unstacker.get_result()
def stack(frame, level=-1, dropna=True):
"""
Convert DataFrame to Series with multi-level Index. Columns become the
second level of the resulting hierarchical index
Returns
-------
stacked : Series
"""
def factorize(index):
if index.is_unique:
return index, np.arange(len(index))
codes, categories = _factorize_from_iterable(index)
return categories, codes
N, K = frame.shape
# Will also convert negative level numbers and check if out of bounds.
level_num = frame.columns._get_level_number(level)
if isinstance(frame.columns, MultiIndex):
return _stack_multi_columns(frame, level_num=level_num, dropna=dropna)
elif isinstance(frame.index, MultiIndex):
new_levels = list(frame.index.levels)
new_labels = [lab.repeat(K) for lab in frame.index.labels]
clev, clab = factorize(frame.columns)
new_levels.append(clev)
new_labels.append(np.tile(clab, N).ravel())
new_names = list(frame.index.names)
new_names.append(frame.columns.name)
new_index = MultiIndex(levels=new_levels, labels=new_labels,
names=new_names, verify_integrity=False)
else:
levels, (ilab, clab) = zip(*map(factorize, (frame.index,
frame.columns)))
labels = ilab.repeat(K), np.tile(clab, N).ravel()
new_index = MultiIndex(levels=levels, labels=labels,
names=[frame.index.name, frame.columns.name],
verify_integrity=False)
new_values = frame.values.ravel()
if dropna:
mask = notna(new_values)
new_values = new_values[mask]
new_index = new_index[mask]
klass = type(frame)._constructor_sliced
return klass(new_values, index=new_index)
def stack_multiple(frame, level, dropna=True):
# If all passed levels match up to column names, no
# ambiguity about what to do
if all(lev in frame.columns.names for lev in level):
result = frame
for lev in level:
result = stack(result, lev, dropna=dropna)
# Otherwise, level numbers may change as each successive level is stacked
elif all(isinstance(lev, int) for lev in level):
# As each stack is done, the level numbers decrease, so we need
# to account for that when level is a sequence of ints
result = frame
# _get_level_number() checks level numbers are in range and converts
# negative numbers to positive
level = [frame.columns._get_level_number(lev) for lev in level]
# Can't iterate directly through level as we might need to change
# values as we go
for index in range(len(level)):
lev = level[index]
result = stack(result, lev, dropna=dropna)
# Decrement all level numbers greater than current, as these
# have now shifted down by one
updated_level = []
for other in level:
if other > lev:
updated_level.append(other - 1)
else:
updated_level.append(other)
level = updated_level
else:
raise ValueError("level should contain all level names or all level "
"numbers, not a mixture of the two.")
return result
def _stack_multi_columns(frame, level_num=-1, dropna=True):
def _convert_level_number(level_num, columns):
"""
Logic for converting the level number to something we can safely pass
to swaplevel:
We generally want to convert the level number into a level name, except
when columns do not have names, in which case we must leave as a level
number
"""
if level_num in columns.names:
return columns.names[level_num]
else:
if columns.names[level_num] is None:
return level_num
else:
return columns.names[level_num]
this = frame.copy()
# this makes life much simpler
if level_num != frame.columns.nlevels - 1:
# roll levels to put selected level at end
roll_columns = this.columns
for i in range(level_num, frame.columns.nlevels - 1):
# Need to check if the ints conflict with level names
lev1 = _convert_level_number(i, roll_columns)
lev2 = _convert_level_number(i + 1, roll_columns)
roll_columns = roll_columns.swaplevel(lev1, lev2)
this.columns = roll_columns
if not this.columns.is_lexsorted():
# Workaround the edge case where 0 is one of the column names,
# which interferes with trying to sort based on the first
# level
level_to_sort = _convert_level_number(0, this.columns)
this = this.sort_index(level=level_to_sort, axis=1)
# tuple list excluding level for grouping columns
if len(frame.columns.levels) > 2:
tuples = list(zip(*[lev.take(lab)
for lev, lab in zip(this.columns.levels[:-1],
this.columns.labels[:-1])]))
unique_groups = [key for key, _ in itertools.groupby(tuples)]
new_names = this.columns.names[:-1]
new_columns = MultiIndex.from_tuples(unique_groups, names=new_names)
else:
new_columns = unique_groups = this.columns.levels[0]
# time to ravel the values
new_data = {}
level_vals = this.columns.levels[-1]
level_labels = sorted(set(this.columns.labels[-1]))
level_vals_used = level_vals[level_labels]
levsize = len(level_labels)
drop_cols = []
for key in unique_groups:
try:
loc = this.columns.get_loc(key)
except KeyError:
drop_cols.append(key)
continue
# can make more efficient?
# we almost always return a slice
# but if unsorted can get a boolean
# indexer
if not isinstance(loc, slice):
slice_len = len(loc)
else:
slice_len = loc.stop - loc.start
if slice_len != levsize:
chunk = this.loc[:, this.columns[loc]]
chunk.columns = level_vals.take(chunk.columns.labels[-1])
value_slice = chunk.reindex(columns=level_vals_used).values
else:
if frame._is_mixed_type:
value_slice = this.loc[:, this.columns[loc]].values
else:
value_slice = this.values[:, loc]
new_data[key] = value_slice.ravel()
if len(drop_cols) > 0:
new_columns = new_columns.difference(drop_cols)
N = len(this)
if isinstance(this.index, MultiIndex):
new_levels = list(this.index.levels)
new_names = list(this.index.names)
new_labels = [lab.repeat(levsize) for lab in this.index.labels]
else:
new_levels = [this.index]
new_labels = [np.arange(N).repeat(levsize)]
new_names = [this.index.name] # something better?
new_levels.append(level_vals)
new_labels.append(np.tile(level_labels, N))
new_names.append(frame.columns.names[level_num])
new_index = MultiIndex(levels=new_levels, labels=new_labels,
names=new_names, verify_integrity=False)
result = DataFrame(new_data, index=new_index, columns=new_columns)
# more efficient way to go about this? can do the whole masking biz but
# will only save a small amount of time...
if dropna:
result = result.dropna(axis=0, how='all')
return result
def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False,
columns=None, sparse=False, drop_first=False, dtype=None):
"""
Convert categorical variable into dummy/indicator variables
Parameters
----------
data : array-like, Series, or DataFrame
prefix : string, list of strings, or dict of strings, default None
String to append DataFrame column names
Pass a list with length equal to the number of columns
when calling get_dummies on a DataFrame. Alternatively, `prefix`
can be a dictionary mapping column names to prefixes.
prefix_sep : string, default '_'
If appending prefix, separator/delimiter to use. Or pass a
list or dictionary as with `prefix.`
dummy_na : bool, default False
Add a column to indicate NaNs, if False NaNs are ignored.
columns : list-like, default None
Column names in the DataFrame to be encoded.
If `columns` is None then all the columns with
`object` or `category` dtype will be converted.
sparse : bool, default False
Whether the dummy columns should be sparse or not. Returns
SparseDataFrame if `data` is a Series or if all columns are included.
Otherwise returns a DataFrame with some SparseBlocks.
drop_first : bool, default False
Whether to get k-1 dummies out of k categorical levels by removing the
first level.
.. versionadded:: 0.18.0
dtype : dtype, default np.uint8
Data type for new columns. Only a single dtype is allowed.
.. versionadded:: 0.23.0
Returns
-------
dummies : DataFrame or SparseDataFrame
Examples
--------
>>> import pandas as pd
>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s)
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
>>> s1 = ['a', 'b', np.nan]
>>> pd.get_dummies(s1)
a b
0 1 0
1 0 1
2 0 0
>>> pd.get_dummies(s1, dummy_na=True)
a b NaN
0 1 0 0
1 0 1 0
2 0 0 1
>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'],
... 'C': [1, 2, 3]})
>>> pd.get_dummies(df, prefix=['col1', 'col2'])
C col1_a col1_b col2_a col2_b col2_c
0 1 1 0 0 1 0
1 2 0 1 1 0 0
2 3 1 0 0 0 1
>>> pd.get_dummies(pd.Series(list('abcaa')))
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0
>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)
b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0
>>> pd.get_dummies(pd.Series(list('abc')), dtype=float)
a b c
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
See Also
--------
Series.str.get_dummies
"""
from pandas.core.reshape.concat import concat
from itertools import cycle
if isinstance(data, DataFrame):
# determine columns being encoded
if columns is None:
columns_to_encode = data.select_dtypes(
include=['object', 'category']).columns
else:
columns_to_encode = columns
# validate prefixes and separator to avoid silently dropping cols
def check_len(item, name):
len_msg = ("Length of '{name}' ({len_item}) did not match the "
"length of the columns being encoded ({len_enc}).")
if is_list_like(item):
if not len(item) == len(columns_to_encode):
len_msg = len_msg.format(name=name, len_item=len(item),
len_enc=len(columns_to_encode))
raise ValueError(len_msg)
check_len(prefix, 'prefix')
check_len(prefix_sep, 'prefix_sep')
if isinstance(prefix, compat.string_types):
prefix = cycle([prefix])
if isinstance(prefix, dict):
prefix = [prefix[col] for col in columns_to_encode]
if prefix is None:
prefix = columns_to_encode
# validate separators
if isinstance(prefix_sep, compat.string_types):
prefix_sep = cycle([prefix_sep])
elif isinstance(prefix_sep, dict):
prefix_sep = [prefix_sep[col] for col in columns_to_encode]
if set(columns_to_encode) == set(data.columns):
with_dummies = []
else:
with_dummies = [data.drop(columns_to_encode, axis=1)]
for (col, pre, sep) in zip(columns_to_encode, prefix, prefix_sep):
dummy = _get_dummies_1d(data[col], prefix=pre, prefix_sep=sep,
dummy_na=dummy_na, sparse=sparse,
drop_first=drop_first, dtype=dtype)
with_dummies.append(dummy)
result = concat(with_dummies, axis=1)
else:
result = _get_dummies_1d(data, prefix, prefix_sep, dummy_na,
sparse=sparse,
drop_first=drop_first,
dtype=dtype)
return result
def _get_dummies_1d(data, prefix, prefix_sep='_', dummy_na=False,
sparse=False, drop_first=False, dtype=None):
# Series avoids inconsistent NaN handling
codes, levels = _factorize_from_iterable(Series(data))
if dtype is None:
dtype = np.uint8
dtype = np.dtype(dtype)
if is_object_dtype(dtype):
raise ValueError("dtype=object is not a valid dtype for get_dummies")
def get_empty_Frame(data, sparse):
if isinstance(data, Series):
index = data.index
else:
index = np.arange(len(data))
if not sparse:
return DataFrame(index=index)
else:
return SparseDataFrame(index=index, default_fill_value=0)
# if all NaN
if not dummy_na and len(levels) == 0:
return get_empty_Frame(data, sparse)
codes = codes.copy()
if dummy_na:
codes[codes == -1] = len(levels)
levels = np.append(levels, np.nan)
# if dummy_na, we just fake a nan level. drop_first will drop it again
if drop_first and len(levels) == 1:
return get_empty_Frame(data, sparse)
number_of_cols = len(levels)
if prefix is not None:
dummy_strs = [u'{prefix}{sep}{level}' if isinstance(v, text_type)
else '{prefix}{sep}{level}' for v in levels]
dummy_cols = [dummy_str.format(prefix=prefix, sep=prefix_sep, level=v)
for dummy_str, v in zip(dummy_strs, levels)]
else:
dummy_cols = levels
if isinstance(data, Series):
index = data.index
else:
index = None
if sparse:
sparse_series = {}
N = len(data)
sp_indices = [[] for _ in range(len(dummy_cols))]
for ndx, code in enumerate(codes):
if code == -1:
# Blank entries if not dummy_na and code == -1, #GH4446
continue
sp_indices[code].append(ndx)
if drop_first:
# remove first categorical level to avoid perfect collinearity
# GH12042
sp_indices = sp_indices[1:]
dummy_cols = dummy_cols[1:]
for col, ixs in zip(dummy_cols, sp_indices):
sarr = SparseArray(np.ones(len(ixs), dtype=dtype),
sparse_index=IntIndex(N, ixs), fill_value=0,
dtype=dtype)
sparse_series[col] = SparseSeries(data=sarr, index=index)
out = SparseDataFrame(sparse_series, index=index, columns=dummy_cols,
default_fill_value=0,
dtype=dtype)
return out
else:
dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes, axis=0)
if not dummy_na:
# reset NaN GH4446
dummy_mat[codes == -1] = 0
if drop_first:
# remove first GH12042
dummy_mat = dummy_mat[:, 1:]
dummy_cols = dummy_cols[1:]
return DataFrame(dummy_mat, index=index, columns=dummy_cols)
def make_axis_dummies(frame, axis='minor', transform=None):
"""
Construct 1-0 dummy variables corresponding to designated axis
labels
Parameters
----------
frame : DataFrame
axis : {'major', 'minor'}, default 'minor'
transform : function, default None
Function to apply to axis labels first. For example, to
get "day of week" dummies in a time series regression
you might call::
make_axis_dummies(panel, axis='major',
transform=lambda d: d.weekday())
Returns
-------
dummies : DataFrame
Column names taken from chosen axis
"""
numbers = {'major': 0, 'minor': 1}
num = numbers.get(axis, axis)
items = frame.index.levels[num]
labels = frame.index.labels[num]
if transform is not None:
mapped_items = items.map(transform)
labels, items = _factorize_from_iterable(mapped_items.take(labels))
values = np.eye(len(items), dtype=float)
values = values.take(labels, axis=0)
return DataFrame(values, columns=items, index=frame.index)