-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathmulti.py
2881 lines (2361 loc) · 99.4 KB
/
multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pylint: disable=E1101,E1103,W0232
import datetime
import warnings
from sys import getsizeof
import numpy as np
from pandas._libs import index as libindex, lib, Timestamp
from pandas.compat import range, zip, lrange, lzip, map
from pandas.compat.numpy import function as nv
from pandas import compat
from pandas.core.dtypes.common import (
_ensure_int64,
_ensure_platform_int,
is_categorical_dtype,
is_object_dtype,
is_iterator,
is_list_like,
pandas_dtype,
is_scalar)
from pandas.core.dtypes.missing import isna, array_equivalent
from pandas.errors import PerformanceWarning, UnsortedIndexError
from pandas.core.common import (_any_not_none,
_values_from_object,
is_bool_indexer,
is_null_slice,
is_true_slices)
import pandas.core.base as base
from pandas.util._decorators import Appender, cache_readonly, deprecate_kwarg
import pandas.core.common as com
import pandas.core.missing as missing
import pandas.core.algorithms as algos
from pandas.io.formats.printing import pprint_thing
from pandas.core.config import get_option
from pandas.core.indexes.base import (
Index, _ensure_index,
_get_na_value, InvalidIndexError,
_index_shared_docs)
from pandas.core.indexes.frozen import (
FrozenNDArray, FrozenList, _ensure_frozen)
import pandas.core.indexes.base as ibase
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(
dict(klass='MultiIndex',
target_klass='MultiIndex or list of tuples'))
class MultiIndex(Index):
"""
A multi-level, or hierarchical, index object for pandas objects
Parameters
----------
levels : sequence of arrays
The unique labels for each level
labels : sequence of arrays
Integers for each level designating which label at each location
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that
level)
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat)
copy : boolean, default False
Copy the meta-data
verify_integrity : boolean, default True
Check that the levels/labels are consistent and valid
Examples
---------
A new ``MultiIndex`` is typically constructed using one of the helper
methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product`
and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``):
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
labels=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
See further examples for how to construct a MultiIndex in the doc strings
of the mentioned helper methods.
Notes
-----
See the `user guide
<http://pandas.pydata.org/pandas-docs/stable/advanced.html>`_ for more.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex
MultiIndex.from_product : Create a MultiIndex from the cartesian product
of iterables
MultiIndex.from_tuples : Convert list of tuples to a MultiIndex
Index : The base pandas Index type
Attributes
----------
names
levels
labels
nlevels
levshape
Methods
-------
from_arrays
from_tuples
from_product
set_levels
set_labels
to_hierarchical
to_frame
is_lexsorted
sortlevel
droplevel
swaplevel
reorder_levels
remove_unused_levels
"""
# initialize to zero-length tuples to make everything work
_typ = 'multiindex'
_names = FrozenList()
_levels = FrozenList()
_labels = FrozenList()
_comparables = ['names']
rename = Index.set_names
def __new__(cls, levels=None, labels=None, sortorder=None, names=None,
copy=False, verify_integrity=True, _set_identity=True,
name=None, **kwargs):
# compat with Index
if name is not None:
names = name
if levels is None or labels is None:
raise TypeError("Must pass both levels and labels")
if len(levels) != len(labels):
raise ValueError('Length of levels and labels must be the same.')
if len(levels) == 0:
raise ValueError('Must pass non-zero number of levels/labels')
result = object.__new__(MultiIndex)
# we've already validated levels and labels, so shortcut here
result._set_levels(levels, copy=copy, validate=False)
result._set_labels(labels, copy=copy, validate=False)
if names is not None:
# handles name validation
result._set_names(names)
if sortorder is not None:
result.sortorder = int(sortorder)
else:
result.sortorder = sortorder
if verify_integrity:
result._verify_integrity()
if _set_identity:
result._reset_identity()
return result
def _verify_integrity(self, labels=None, levels=None):
"""
Parameters
----------
labels : optional list
Labels to check for validity. Defaults to current labels.
levels : optional list
Levels to check for validity. Defaults to current levels.
Raises
------
ValueError
If length of levels and labels don't match, if any label would
exceed level bounds, or there are any duplicate levels.
"""
# NOTE: Currently does not check, among other things, that cached
# nlevels matches nor that sortorder matches actually sortorder.
labels = labels or self.labels
levels = levels or self.levels
if len(levels) != len(labels):
raise ValueError("Length of levels and labels must match. NOTE:"
" this index is in an inconsistent state.")
label_length = len(self.labels[0])
for i, (level, label) in enumerate(zip(levels, labels)):
if len(label) != label_length:
raise ValueError("Unequal label lengths: %s" %
([len(lab) for lab in labels]))
if len(label) and label.max() >= len(level):
raise ValueError("On level %d, label max (%d) >= length of"
" level (%d). NOTE: this index is in an"
" inconsistent state" % (i, label.max(),
len(level)))
if not level.is_unique:
raise ValueError("Level values must be unique: {values} on "
"level {level}".format(
values=[value for value in level],
level=i))
@property
def levels(self):
return self._levels
def _set_levels(self, levels, level=None, copy=False, validate=True,
verify_integrity=False):
# This is NOT part of the levels property because it should be
# externally not allowed to set levels. User beware if you change
# _levels directly
if validate and len(levels) == 0:
raise ValueError('Must set non-zero number of levels.')
if validate and level is None and len(levels) != self.nlevels:
raise ValueError('Length of levels must match number of levels.')
if validate and level is not None and len(levels) != len(level):
raise ValueError('Length of levels must match length of level.')
if level is None:
new_levels = FrozenList(
_ensure_index(lev, copy=copy)._shallow_copy()
for lev in levels)
else:
level = [self._get_level_number(l) for l in level]
new_levels = list(self._levels)
for l, v in zip(level, levels):
new_levels[l] = _ensure_index(v, copy=copy)._shallow_copy()
new_levels = FrozenList(new_levels)
if verify_integrity:
self._verify_integrity(levels=new_levels)
names = self.names
self._levels = new_levels
if any(names):
self._set_names(names)
self._tuples = None
self._reset_cache()
def set_levels(self, levels, level=None, inplace=False,
verify_integrity=True):
"""
Set new levels on MultiIndex. Defaults to returning
new index.
Parameters
----------
levels : sequence or list of sequence
new level(s) to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and labels are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
>>> idx.set_levels(['a','b'], level=0)
MultiIndex(levels=[[u'a', u'b'], [u'one', u'two']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
>>> idx.set_levels(['a','b'], level='bar')
MultiIndex(levels=[[1, 2], [u'a', u'b']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
>>> idx.set_levels([['a','b'], [1,2]], level=[0,1])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
"""
if level is not None and not is_list_like(level):
if not is_list_like(levels):
raise TypeError("Levels must be list-like")
if is_list_like(levels[0]):
raise TypeError("Levels must be list-like")
level = [level]
levels = [levels]
elif level is None or is_list_like(level):
if not is_list_like(levels) or not is_list_like(levels[0]):
raise TypeError("Levels must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_levels(levels, level=level, validate=True,
verify_integrity=verify_integrity)
if not inplace:
return idx
@property
def labels(self):
return self._labels
def _set_labels(self, labels, level=None, copy=False, validate=True,
verify_integrity=False):
if validate and level is None and len(labels) != self.nlevels:
raise ValueError("Length of labels must match number of levels")
if validate and level is not None and len(labels) != len(level):
raise ValueError('Length of labels must match length of levels.')
if level is None:
new_labels = FrozenList(
_ensure_frozen(lab, lev, copy=copy)._shallow_copy()
for lev, lab in zip(self.levels, labels))
else:
level = [self._get_level_number(l) for l in level]
new_labels = list(self._labels)
for lev_idx, lab in zip(level, labels):
lev = self.levels[lev_idx]
new_labels[lev_idx] = _ensure_frozen(
lab, lev, copy=copy)._shallow_copy()
new_labels = FrozenList(new_labels)
if verify_integrity:
self._verify_integrity(labels=new_labels)
self._labels = new_labels
self._tuples = None
self._reset_cache()
def set_labels(self, labels, level=None, inplace=False,
verify_integrity=True):
"""
Set new labels on MultiIndex. Defaults to returning
new index.
Parameters
----------
labels : sequence or list of sequence
new labels to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and labels are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')],
names=['foo', 'bar'])
>>> idx.set_labels([[1,0,1,0], [0,0,1,1]])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])
>>> idx.set_labels([1,0,1,0], level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
>>> idx.set_labels([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[0, 0, 1, 1], [0, 0, 1, 1]],
names=[u'foo', u'bar'])
>>> idx.set_labels([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])
"""
if level is not None and not is_list_like(level):
if not is_list_like(labels):
raise TypeError("Labels must be list-like")
if is_list_like(labels[0]):
raise TypeError("Labels must be list-like")
level = [level]
labels = [labels]
elif level is None or is_list_like(level):
if not is_list_like(labels) or not is_list_like(labels[0]):
raise TypeError("Labels must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_labels(labels, level=level, verify_integrity=verify_integrity)
if not inplace:
return idx
def copy(self, names=None, dtype=None, levels=None, labels=None,
deep=False, _set_identity=False, **kwargs):
"""
Make a copy of this object. Names, dtype, levels and labels can be
passed and will be set on new copy.
Parameters
----------
names : sequence, optional
dtype : numpy dtype or pandas type, optional
levels : sequence, optional
labels : sequence, optional
Returns
-------
copy : MultiIndex
Notes
-----
In most cases, there should be no functional difference from using
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
This could be potentially expensive on large MultiIndex objects.
"""
name = kwargs.get('name')
names = self._validate_names(name=name, names=names, deep=deep)
if deep:
from copy import deepcopy
if levels is None:
levels = deepcopy(self.levels)
if labels is None:
labels = deepcopy(self.labels)
else:
if levels is None:
levels = self.levels
if labels is None:
labels = self.labels
return MultiIndex(levels=levels, labels=labels, names=names,
sortorder=self.sortorder, verify_integrity=False,
_set_identity=_set_identity)
def __array__(self, dtype=None):
""" the array interface, return my values """
return self.values
def view(self, cls=None):
""" this is defined as a copy with the same identity """
result = self.copy()
result._id = self._id
return result
def _shallow_copy_with_infer(self, values=None, **kwargs):
# On equal MultiIndexes the difference is empty.
# Therefore, an empty MultiIndex is returned GH13490
if len(values) == 0:
return MultiIndex(levels=[[] for _ in range(self.nlevels)],
labels=[[] for _ in range(self.nlevels)],
**kwargs)
return self._shallow_copy(values, **kwargs)
@Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs)
def __contains__(self, key):
hash(key)
try:
self.get_loc(key)
return True
except (LookupError, TypeError):
return False
contains = __contains__
@Appender(_index_shared_docs['_shallow_copy'])
def _shallow_copy(self, values=None, **kwargs):
if values is not None:
if 'name' in kwargs:
kwargs['names'] = kwargs.pop('name', None)
# discards freq
kwargs.pop('freq', None)
return MultiIndex.from_tuples(values, **kwargs)
return self.view()
@cache_readonly
def dtype(self):
return np.dtype('O')
def _is_memory_usage_qualified(self):
""" return a boolean if we need a qualified .info display """
def f(l):
return 'mixed' in l or 'string' in l or 'unicode' in l
return any(f(l) for l in self._inferred_type_levels)
@Appender(Index.memory_usage.__doc__)
def memory_usage(self, deep=False):
# we are overwriting our base class to avoid
# computing .values here which could materialize
# a tuple representation uncessarily
return self._nbytes(deep)
@cache_readonly
def nbytes(self):
""" return the number of bytes in the underlying data """
return self._nbytes(False)
def _nbytes(self, deep=False):
"""
return the number of bytes in the underlying data
deeply introspect the level data if deep=True
include the engine hashtable
*this is in internal routine*
"""
# for implementations with no useful getsizeof (PyPy)
objsize = 24
level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels)
label_nbytes = sum(i.nbytes for i in self.labels)
names_nbytes = sum(getsizeof(i, objsize) for i in self.names)
result = level_nbytes + label_nbytes + names_nbytes
# include our engine hashtable
result += self._engine.sizeof(deep=deep)
return result
def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value)
"""
attrs = [
('levels', ibase.default_pprint(self._levels,
max_seq_items=False)),
('labels', ibase.default_pprint(self._labels,
max_seq_items=False))]
if _any_not_none(*self.names):
attrs.append(('names', ibase.default_pprint(self.names)))
if self.sortorder is not None:
attrs.append(('sortorder', ibase.default_pprint(self.sortorder)))
return attrs
def _format_space(self):
return "\n%s" % (' ' * (len(self.__class__.__name__) + 1))
def _format_data(self, name=None):
# we are formatting thru the attributes
return None
def __len__(self):
return len(self.labels[0])
def _get_names(self):
return FrozenList(level.name for level in self.levels)
def _set_names(self, names, level=None, validate=True):
"""
sets names on levels. WARNING: mutates!
Note that you generally want to set this *after* changing levels, so
that it only acts on copies
"""
# GH 15110
# Don't allow a single string for names in a MultiIndex
if names is not None and not is_list_like(names):
raise ValueError('Names should be list-like for a MultiIndex')
names = list(names)
if validate and level is not None and len(names) != len(level):
raise ValueError('Length of names must match length of level.')
if validate and level is None and len(names) != self.nlevels:
raise ValueError('Length of names must match number of levels in '
'MultiIndex.')
if level is None:
level = range(self.nlevels)
used = {}
else:
level = [self._get_level_number(l) for l in level]
used = {self.levels[l].name: l
for l in set(range(self.nlevels)) - set(level)}
# set the name
for l, name in zip(level, names):
if name is not None and name in used:
raise ValueError('Duplicated level name: "{}", assigned to '
'level {}, is already used for level '
'{}.'.format(name, l, used[name]))
self.levels[l].rename(name, inplace=True)
used[name] = l
names = property(fset=_set_names, fget=_get_names,
doc="Names of levels in MultiIndex")
def _format_native_types(self, na_rep='nan', **kwargs):
new_levels = []
new_labels = []
# go through the levels and format them
for level, label in zip(self.levels, self.labels):
level = level._format_native_types(na_rep=na_rep, **kwargs)
# add nan values, if there are any
mask = (label == -1)
if mask.any():
nan_index = len(level)
level = np.append(level, na_rep)
label = label.values()
label[mask] = nan_index
new_levels.append(level)
new_labels.append(label)
# reconstruct the multi-index
mi = MultiIndex(levels=new_levels, labels=new_labels, names=self.names,
sortorder=self.sortorder, verify_integrity=False)
return mi.values
@Appender(_index_shared_docs['_get_grouper_for_level'])
def _get_grouper_for_level(self, mapper, level):
indexer = self.labels[level]
level_index = self.levels[level]
if mapper is not None:
# Handle group mapping function and return
level_values = self.levels[level].take(indexer)
grouper = level_values.map(mapper)
return grouper, None, None
labels, uniques = algos.factorize(indexer, sort=True)
if len(uniques) > 0 and uniques[0] == -1:
# Handle NAs
mask = indexer != -1
ok_labels, uniques = algos.factorize(indexer[mask],
sort=True)
labels = np.empty(len(indexer), dtype=indexer.dtype)
labels[mask] = ok_labels
labels[~mask] = -1
if len(uniques) < len(level_index):
# Remove unobserved levels from level_index
level_index = level_index.take(uniques)
grouper = level_index.take(labels)
return grouper, labels, level_index
@property
def _constructor(self):
return MultiIndex.from_tuples
@cache_readonly
def inferred_type(self):
return 'mixed'
@staticmethod
def _from_elements(values, labels=None, levels=None, names=None,
sortorder=None):
return MultiIndex(levels, labels, names, sortorder=sortorder)
def _get_level_number(self, level):
try:
count = self.names.count(level)
if count > 1:
raise ValueError('The name %s occurs multiple times, use a '
'level number' % level)
level = self.names.index(level)
except ValueError:
if not isinstance(level, int):
raise KeyError('Level %s not found' % str(level))
elif level < 0:
level += self.nlevels
if level < 0:
orig_level = level - self.nlevels
raise IndexError('Too many levels: Index has only %d '
'levels, %d is not a valid level number' %
(self.nlevels, orig_level))
# Note: levels are zero-based
elif level >= self.nlevels:
raise IndexError('Too many levels: Index has only %d levels, '
'not %d' % (self.nlevels, level + 1))
return level
_tuples = None
@cache_readonly
def _engine(self):
# choose our engine based on our size
# the hashing based MultiIndex for larger
# sizes, and the MultiIndexOjbect for smaller
# xref: https://github.com/pandas-dev/pandas/pull/16324
l = len(self)
if l > 10000:
return libindex.MultiIndexHashEngine(lambda: self, l)
return libindex.MultiIndexObjectEngine(lambda: self.values, l)
@property
def values(self):
if self._tuples is not None:
return self._tuples
values = []
for lev, lab in zip(self.levels, self.labels):
# Need to box timestamps, etc.
box = hasattr(lev, '_box_values')
# Try to minimize boxing.
if box and len(lev) > len(lab):
taken = lev._box_values(algos.take_1d(lev._values, lab))
elif box:
taken = algos.take_1d(lev._box_values(lev._values), lab,
fill_value=_get_na_value(lev.dtype.type))
else:
taken = algos.take_1d(np.asarray(lev._values), lab)
values.append(taken)
self._tuples = lib.fast_zip(values)
return self._tuples
# fml
@property
def _is_v1(self):
return False
@property
def _is_v2(self):
return False
@property
def _has_complex_internals(self):
# to disable groupby tricks
return True
@cache_readonly
def is_monotonic(self):
"""
return if the index is monotonic increasing (only equal or
increasing) values.
"""
return self.is_monotonic_increasing
@cache_readonly
def is_monotonic_increasing(self):
"""
return if the index is monotonic increasing (only equal or
increasing) values.
"""
# reversed() because lexsort() wants the most significant key last.
values = [self._get_level_values(i).values
for i in reversed(range(len(self.levels)))]
try:
sort_order = np.lexsort(values)
return Index(sort_order).is_monotonic
except TypeError:
# we have mixed types and np.lexsort is not happy
return Index(self.values).is_monotonic
@cache_readonly
def is_monotonic_decreasing(self):
"""
return if the index is monotonic decreasing (only equal or
decreasing) values.
"""
# monotonic decreasing if and only if reverse is monotonic increasing
return self[::-1].is_monotonic_increasing
@cache_readonly
def is_unique(self):
return not self.duplicated().any()
@cache_readonly
def _have_mixed_levels(self):
""" return a boolean list indicated if we have mixed levels """
return ['mixed' in l for l in self._inferred_type_levels]
@cache_readonly
def _inferred_type_levels(self):
""" return a list of the inferred types, one for each level """
return [i.inferred_type for i in self.levels]
@cache_readonly
def _hashed_values(self):
""" return a uint64 ndarray of my hashed values """
from pandas.core.util.hashing import hash_tuples
return hash_tuples(self)
def _hashed_indexing_key(self, key):
"""
validate and return the hash for the provided key
*this is internal for use for the cython routines*
Parameters
----------
key : string or tuple
Returns
-------
np.uint64
Notes
-----
we need to stringify if we have mixed levels
"""
from pandas.core.util.hashing import hash_tuples, hash_tuple
if not isinstance(key, tuple):
return hash_tuples(key)
if not len(key) == self.nlevels:
raise KeyError
def f(k, stringify):
if stringify and not isinstance(k, compat.string_types):
k = str(k)
return k
key = tuple([f(k, stringify)
for k, stringify in zip(key, self._have_mixed_levels)])
return hash_tuple(key)
@Appender(base._shared_docs['duplicated'] % _index_doc_kwargs)
def duplicated(self, keep='first'):
from pandas.core.sorting import get_group_index
from pandas._libs.hashtable import duplicated_int64
shape = map(len, self.levels)
ids = get_group_index(self.labels, shape, sort=False, xnull=False)
return duplicated_int64(ids, keep)
def fillna(self, value=None, downcast=None):
"""
fillna is not implemented for MultiIndex
"""
raise NotImplementedError('isna is not defined for MultiIndex')
@Appender(_index_shared_docs['dropna'])
def dropna(self, how='any'):
nans = [label == -1 for label in self.labels]
if how == 'any':
indexer = np.any(nans, axis=0)
elif how == 'all':
indexer = np.all(nans, axis=0)
else:
raise ValueError("invalid how option: {0}".format(how))
new_labels = [label[~indexer] for label in self.labels]
return self.copy(labels=new_labels, deep=True)
def get_value(self, series, key):
# somewhat broken encapsulation
from pandas.core.indexing import maybe_droplevels
# Label-based
s = _values_from_object(series)
k = _values_from_object(key)
def _try_mi(k):
# TODO: what if a level contains tuples??
loc = self.get_loc(k)
new_values = series._values[loc]
new_index = self[loc]
new_index = maybe_droplevels(new_index, k)
return series._constructor(new_values, index=new_index,
name=series.name).__finalize__(self)
try:
return self._engine.get_value(s, k)
except KeyError as e1:
try:
return _try_mi(key)
except KeyError:
pass
try:
return libindex.get_value_at(s, k)
except IndexError:
raise
except TypeError:
# generator/iterator-like
if is_iterator(key):
raise InvalidIndexError(key)
else:
raise e1
except Exception: # pragma: no cover
raise e1
except TypeError:
# a Timestamp will raise a TypeError in a multi-index
# rather than a KeyError, try it here
# note that a string that 'looks' like a Timestamp will raise
# a KeyError! (GH5725)
if (isinstance(key, (datetime.datetime, np.datetime64)) or
(compat.PY3 and isinstance(key, compat.string_types))):
try:
return _try_mi(key)
except (KeyError):
raise
except:
pass
try:
return _try_mi(Timestamp(key))
except:
pass
raise InvalidIndexError(key)
def _get_level_values(self, level, unique=False):
"""
Return vector of label values for requested level,
equal to the length of the index
**this is an internal method**
Parameters
----------
level : int level
unique : bool, default False
if True, drop duplicated values
Returns
-------
values : ndarray
"""
values = self.levels[level]
labels = self.labels[level]
if unique:
labels = algos.unique(labels)
filled = algos.take_1d(values._values, labels,
fill_value=values._na_value)
values = values._shallow_copy(filled)
return values
def get_level_values(self, level):
"""
Return vector of label values for requested level,
equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
``values`` is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
---------
Create a MultiIndex:
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2')
"""
level = self._get_level_number(level)
values = self._get_level_values(level)
return values
@Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs)
def unique(self, level=None):
if level is None:
return super(MultiIndex, self).unique()
else:
level = self._get_level_number(level)
return self._get_level_values(level=level, unique=True)
def format(self, space=2, sparsify=None, adjoin=True, names=False,
na_rep=None, formatter=None):
if len(self) == 0:
return []
stringified_levels = []
for lev, lab in zip(self.levels, self.labels):
na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type)