Skip to content

Latest commit

 

History

History
620 lines (415 loc) · 19.8 KB

text.rst

File metadata and controls

620 lines (415 loc) · 19.8 KB

{{ header }}

Working with Text Data

Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str attribute and generally have names matching the equivalent (scalar) built-in string methods:

.. ipython:: python

   s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
   s.str.lower()
   s.str.upper()
   s.str.len()

.. ipython:: python

   idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
   idx.str.strip()
   idx.str.lstrip()
   idx.str.rstrip()

The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:

.. ipython:: python

   df = pd.DataFrame(np.random.randn(3, 2),
                     columns=[' Column A ', ' Column B '], index=range(3))
   df

Since df.columns is an Index object, we can use the .str accessor

.. ipython:: python

   df.columns.str.strip()
   df.columns.str.lower()

These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing white spaces, lower casing all names, and replacing any remaining white spaces with underscores:

.. ipython:: python

   df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
   df

Note

If you have a Series where lots of elements are repeated (i.e. the number of unique elements in the Series is a lot smaller than the length of the Series), it can be faster to convert the original Series to one of type category and then use .str.<method> or .dt.<property> on that. The performance difference comes from the fact that, for Series of type category, the string operations are done on the .categories and not on each element of the Series.

Please note that a Series of type category with string .categories has some limitations in comparison of Series of type string (e.g. you can't add strings to each other: s + " " + s won't work if s is a Series of type category). Also, .str methods which operate on elements of type list are not available on such a Series.

Splitting and Replacing Strings

Methods like split return a Series of lists:

.. ipython:: python

   s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
   s2.str.split('_')

Elements in the split lists can be accessed using get or [] notation:

.. ipython:: python

   s2.str.split('_').str.get(1)
   s2.str.split('_').str[1]

It is easy to expand this to return a DataFrame using expand.

.. ipython:: python

   s2.str.split('_', expand=True)

It is also possible to limit the number of splits:

.. ipython:: python

   s2.str.split('_', expand=True, n=1)

rsplit is similar to split except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:

.. ipython:: python

   s2.str.rsplit('_', expand=True, n=1)

replace by default replaces regular expressions:

.. ipython:: python

   s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
                  '', np.nan, 'CABA', 'dog', 'cat'])
   s3
   s3.str.replace('^.a|dog', 'XX-XX ', case=False)

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:

.. ipython:: python

   # Consider the following badly formatted financial data
   dollars = pd.Series(['12', '-$10', '$10,000'])

   # This does what you'd naively expect:
   dollars.str.replace('$', '')

   # But this doesn't:
   dollars.str.replace('-$', '-')

   # We need to escape the special character (for >1 len patterns)
   dollars.str.replace(r'-\$', '-')

.. versionadded:: 0.23.0

If you do want literal replacement of a string (equivalent to :meth:`str.replace`), you can set the optional regex parameter to False, rather than escaping each character. In this case both pat and repl must be strings:

.. ipython:: python

    # These lines are equivalent
    dollars.str.replace(r'-\$', '-')
    dollars.str.replace('-$', '-', regex=False)

.. versionadded:: 0.20.0

The replace method can also take a callable as replacement. It is called on every pat using :func:`re.sub`. The callable should expect one positional argument (a regex object) and return a string.

.. ipython:: python

   # Reverse every lowercase alphabetic word
   pat = r'[a-z]+'

   def repl(m):
       return m.group(0)[::-1]

   pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)

   # Using regex groups
   pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"

   def repl(m):
       return m.group('two').swapcase()

   pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)

.. versionadded:: 0.20.0

The replace method also accepts a compiled regular expression object from :func:`re.compile` as a pattern. All flags should be included in the compiled regular expression object.

.. ipython:: python

   import re
   regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
   s3.str.replace(regex_pat, 'XX-XX ')

Including a flags argument when calling replace with a compiled regular expression object will raise a ValueError.

.. ipython::

    @verbatim
    In [1]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
    ---------------------------------------------------------------------------
    ValueError: case and flags cannot be set when pat is a compiled regex

Concatenation

There are several ways to concatenate a Series or Index, either with itself or others, all based on :meth:`~Series.str.cat`, resp. Index.str.cat.

Concatenating a single Series into a string

The content of a Series (or Index) can be concatenated:

.. ipython:: python

    s = pd.Series(['a', 'b', 'c', 'd'])
    s.str.cat(sep=',')

If not specified, the keyword sep for the separator defaults to the empty string, sep='':

.. ipython:: python

    s.str.cat()

By default, missing values are ignored. Using na_rep, they can be given a representation:

.. ipython:: python

    t = pd.Series(['a', 'b', np.nan, 'd'])
    t.str.cat(sep=',')
    t.str.cat(sep=',', na_rep='-')

Concatenating a Series and something list-like into a Series

The first argument to :meth:`~Series.str.cat` can be a list-like object, provided that it matches the length of the calling Series (or Index).

.. ipython:: python

    s.str.cat(['A', 'B', 'C', 'D'])

Missing values on either side will result in missing values in the result as well, unless na_rep is specified:

.. ipython:: python

    s.str.cat(t)
    s.str.cat(t, na_rep='-')

Concatenating a Series and something array-like into a Series

.. versionadded:: 0.23.0

The parameter others can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series (or Index).

.. ipython:: python

    d = pd.concat([t, s], axis=1)
    s
    d
    s.str.cat(d, na_rep='-')

Concatenating a Series and an indexed object into a Series, with alignment

.. versionadded:: 0.23.0

For concatenation with a Series or DataFrame, it is possible to align the indexes before concatenation by setting the join-keyword.

.. ipython:: python
   :okwarning:

   u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2])
   s
   u
   s.str.cat(u)
   s.str.cat(u, join='left')

Warning

If the join keyword is not passed, the method :meth:`~Series.str.cat` will currently fall back to the behavior before version 0.23.0 (i.e. no alignment), but a FutureWarning will be raised if any of the involved indexes differ, since this default will change to join='left' in a future version.

The usual options are available for join (one of 'left', 'outer', 'inner', 'right'). In particular, alignment also means that the different lengths do not need to coincide anymore.

.. ipython:: python

    v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4])
    s
    v
    s.str.cat(v, join='left', na_rep='-')
    s.str.cat(v, join='outer', na_rep='-')

The same alignment can be used when others is a DataFrame:

.. ipython:: python

    f = d.loc[[3, 2, 1, 0], :]
    s
    f
    s.str.cat(f, join='left', na_rep='-')

Concatenating a Series and many objects into a Series

Several array-like items (specifically: Series, Index, and 1-dimensional variants of np.ndarray) can be combined in a list-like container (including iterators, dict-views, etc.).

.. ipython:: python

    s
    u
    s.str.cat([u, u.to_numpy()], join='left')

All elements without an index (e.g. np.ndarray) within the passed list-like must match in length to the calling Series (or Index), but Series and Index may have arbitrary length (as long as alignment is not disabled with join=None):

.. ipython:: python

    v
    s.str.cat([v, u, u.to_numpy()], join='outer', na_rep='-')

If using join='right' on a list-like of others that contains different indexes, the union of these indexes will be used as the basis for the final concatenation:

.. ipython:: python

    u.loc[[3]]
    v.loc[[-1, 0]]
    s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-')

Indexing with .str

You can use [] notation to directly index by position locations. If you index past the end of the string, the result will be a NaN.

.. ipython:: python

   s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
                  'CABA', 'dog', 'cat'])

   s.str[0]
   s.str[1]

Extracting Substrings

Extract first match in each subject (extract)

Warning

In version 0.18.0, extract gained the expand argument. When expand=False it returns a Series, Index, or DataFrame, depending on the subject and regular expression pattern (same behavior as pre-0.18.0). When expand=True it always returns a DataFrame, which is more consistent and less confusing from the perspective of a user. expand=True is the default since version 0.23.0.

The extract method accepts a regular expression with at least one capture group.

Extracting a regular expression with more than one group returns a DataFrame with one column per group.

.. ipython:: python

   pd.Series(['a1', 'b2', 'c3']).str.extract(r'([ab])(\d)', expand=False)

Elements that do not match return a row filled with NaN. Thus, a Series of messy strings can be "converted" into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples or re.match objects. The dtype of the result is always object, even if no match is found and the result only contains NaN.

Named groups like

.. ipython:: python

   pd.Series(['a1', 'b2', 'c3']).str.extract(r'(?P<letter>[ab])(?P<digit>\d)',
                                             expand=False)

and optional groups like

.. ipython:: python

   pd.Series(['a1', 'b2', '3']).str.extract(r'([ab])?(\d)', expand=False)

can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.

Extracting a regular expression with one group returns a DataFrame with one column if expand=True.

.. ipython:: python

   pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)

It returns a Series if expand=False.

.. ipython:: python

   pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)

Calling on an Index with a regex with exactly one capture group returns a DataFrame with one column if expand=True.

.. ipython:: python

   s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
   s
   s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)

It returns an Index if expand=False.

.. ipython:: python

   s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)

Calling on an Index with a regex with more than one capture group returns a DataFrame if expand=True.

.. ipython:: python

   s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)

It raises ValueError if expand=False.

>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index

The table below summarizes the behavior of extract(expand=False) (input subject in first column, number of groups in regex in first row)

  1 group >1 group
Index Index ValueError
Series Series DataFrame

Extract all matches in each subject (extractall)

.. versionadded:: 0.18.0

Unlike extract (which returns only the first match),

.. ipython:: python

   s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
   s
   two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
   s.str.extract(two_groups, expand=True)

the extractall method returns every match. The result of extractall is always a DataFrame with a MultiIndex on its rows. The last level of the MultiIndex is named match and indicates the order in the subject.

.. ipython:: python

   s.str.extractall(two_groups)

When each subject string in the Series has exactly one match,

.. ipython:: python

   s = pd.Series(['a3', 'b3', 'c2'])
   s

then extractall(pat).xs(0, level='match') gives the same result as extract(pat).

.. ipython:: python

   extract_result = s.str.extract(two_groups, expand=True)
   extract_result
   extractall_result = s.str.extractall(two_groups)
   extractall_result
   extractall_result.xs(0, level="match")

Index also supports .str.extractall. It returns a DataFrame which has the same result as a Series.str.extractall with a default index (starts from 0).

.. versionadded:: 0.19.0

.. ipython:: python

   pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)

   pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)


Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

.. ipython:: python

   pattern = r'[0-9][a-z]'
   pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)

Or whether elements match a pattern:

.. ipython:: python

   pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)

The distinction between match and contains is strictness: match relies on strict re.match, while contains relies on re.search.

Methods like match, contains, startswith, and endswith take an extra na argument so missing values can be considered True or False:

.. ipython:: python

   s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
   s4.str.contains('A', na=False)

Creating Indicator Variables

You can extract dummy variables from string columns. For example if they are separated by a '|':

.. ipython:: python

    s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
    s.str.get_dummies(sep='|')

String Index also supports get_dummies which returns a MultiIndex.

.. versionadded:: 0.18.1

.. ipython:: python

    idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
    idx.str.get_dummies(sep='|')

See also :func:`~pandas.get_dummies`.

Method Summary

Method Description
:meth:`~Series.str.cat` Concatenate strings
:meth:`~Series.str.split` Split strings on delimiter
:meth:`~Series.str.rsplit` Split strings on delimiter working from the end of the string
:meth:`~Series.str.get` Index into each element (retrieve i-th element)
:meth:`~Series.str.join` Join strings in each element of the Series with passed separator
:meth:`~Series.str.get_dummies` Split strings on the delimiter returning DataFrame of dummy variables
:meth:`~Series.str.contains` Return boolean array if each string contains pattern/regex
:meth:`~Series.str.replace` Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence
:meth:`~Series.str.repeat` Duplicate values (s.str.repeat(3) equivalent to x * 3)
:meth:`~Series.str.pad` Add whitespace to left, right, or both sides of strings
:meth:`~Series.str.center` Equivalent to str.center
:meth:`~Series.str.ljust` Equivalent to str.ljust
:meth:`~Series.str.rjust` Equivalent to str.rjust
:meth:`~Series.str.zfill` Equivalent to str.zfill
:meth:`~Series.str.wrap` Split long strings into lines with length less than a given width
:meth:`~Series.str.slice` Slice each string in the Series
:meth:`~Series.str.slice_replace` Replace slice in each string with passed value
:meth:`~Series.str.count` Count occurrences of pattern
:meth:`~Series.str.startswith` Equivalent to str.startswith(pat) for each element
:meth:`~Series.str.endswith` Equivalent to str.endswith(pat) for each element
:meth:`~Series.str.findall` Compute list of all occurrences of pattern/regex for each string
:meth:`~Series.str.match` Call re.match on each element, returning matched groups as list
:meth:`~Series.str.extract` Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group
:meth:`~Series.str.extractall` Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group
:meth:`~Series.str.len` Compute string lengths
:meth:`~Series.str.strip` Equivalent to str.strip
:meth:`~Series.str.rstrip` Equivalent to str.rstrip
:meth:`~Series.str.lstrip` Equivalent to str.lstrip
:meth:`~Series.str.partition` Equivalent to str.partition
:meth:`~Series.str.rpartition` Equivalent to str.rpartition
:meth:`~Series.str.lower` Equivalent to str.lower
:meth:`~Series.str.upper` Equivalent to str.upper
:meth:`~Series.str.find` Equivalent to str.find
:meth:`~Series.str.rfind` Equivalent to str.rfind
:meth:`~Series.str.index` Equivalent to str.index
:meth:`~Series.str.rindex` Equivalent to str.rindex
:meth:`~Series.str.capitalize` Equivalent to str.capitalize
:meth:`~Series.str.swapcase` Equivalent to str.swapcase
:meth:`~Series.str.normalize` Return Unicode normal form. Equivalent to unicodedata.normalize
:meth:`~Series.str.translate` Equivalent to str.translate
:meth:`~Series.str.isalnum` Equivalent to str.isalnum
:meth:`~Series.str.isalpha` Equivalent to str.isalpha
:meth:`~Series.str.isdigit` Equivalent to str.isdigit
:meth:`~Series.str.isspace` Equivalent to str.isspace
:meth:`~Series.str.islower` Equivalent to str.islower
:meth:`~Series.str.isupper` Equivalent to str.isupper
:meth:`~Series.str.istitle` Equivalent to str.istitle
:meth:`~Series.str.isnumeric` Equivalent to str.isnumeric
:meth:`~Series.str.isdecimal` Equivalent to str.isdecimal