.. currentmodule:: pandas
{{ header }}
.. versionadded:: 0.24.0
In :ref:`missing_data`, we saw that pandas primarily uses NaN
to represent
missing data. Because NaN
is a float, this forces an array of integers with
any missing values to become floating point. In some cases, this may not matter
much. But if your integer column is, say, an identifier, casting to float can
be problematic. Some integers cannot even be represented as floating point
numbers.
Pandas can represent integer data with possibly missing values using :class:`arrays.IntegerArray`. This is an :ref:`extension types <extending.extension-types>` implemented within pandas. It is not the default dtype for integers, and will not be inferred; you must explicitly pass the dtype into :meth:`array` or :class:`Series`:
.. ipython:: python arr = pd.array([1, 2, np.nan], dtype=pd.Int64Dtype()) arr
Or the string alias "Int64"
(note the capital "I"
, to differentiate from
NumPy's 'int64'
dtype:
.. ipython:: python pd.array([1, 2, np.nan], dtype="Int64")
This array can be stored in a :class:`DataFrame` or :class:`Series` like any NumPy array.
.. ipython:: python pd.Series(arr)
You can also pass the list-like object to the :class:`Series` constructor with the dtype.
.. ipython:: python s = pd.Series([1, 2, np.nan], dtype="Int64") s
By default (if you don't specify dtype
), NumPy is used, and you'll end
up with a float64
dtype Series:
.. ipython:: python pd.Series([1, 2, np.nan])
Operations involving an integer array will behave similar to NumPy arrays. Missing values will be propagated, and and the data will be coerced to another dtype if needed.
.. ipython:: python # arithmetic s + 1 # comparison s == 1 # indexing s.iloc[1:3] # operate with other dtypes s + s.iloc[1:3].astype('Int8') # coerce when needed s + 0.01
These dtypes can operate as part of of DataFrame
.
.. ipython:: python df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')}) df df.dtypes
These dtypes can be merged & reshaped & casted.
.. ipython:: python pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes df['A'].astype(float)
Reduction and groupby operations such as 'sum' work as well.
.. ipython:: python df.sum() df.groupby('B').A.sum()