Skip to content

Latest commit

 

History

History
102 lines (71 loc) · 2.71 KB

boolean.rst

File metadata and controls

102 lines (71 loc) · 2.71 KB
.. currentmodule:: pandas

.. ipython:: python
   :suppress:

   import pandas as pd
   import numpy as np

Nullable Boolean data type

.. versionadded:: 1.0.0


Indexing with NA values

pandas allows indexing with NA values in a boolean array, which are treated as False.

.. versionchanged:: 1.0.2

.. ipython:: python
   :okexcept:

   s = pd.Series([1, 2, 3])
   mask = pd.array([True, False, pd.NA], dtype="boolean")
   s[mask]

If you would prefer to keep the NA values you can manually fill them with fillna(True).

.. ipython:: python

   s[mask.fillna(True)]

Kleene Logical Operations

:class:`arrays.BooleanArray` implements Kleene Logic (sometimes called three-value logic) for logical operations like & (and), | (or) and ^ (exclusive-or).

This table demonstrates the results for every combination. These operations are symmetrical, so flipping the left- and right-hand side makes no difference in the result.

Expression Result
True & True True
True & False False
True & NA NA
False & False False
False & NA False
NA & NA NA
True | True True
True | False True
True | NA True
False | False False
False | NA NA
NA | NA NA
True ^ True False
True ^ False True
True ^ NA NA
False ^ False False
False ^ NA NA
NA ^ NA NA

When an NA is present in an operation, the output value is NA only if the result cannot be determined solely based on the other input. For example, True | NA is True, because both True | True and True | False are True. In that case, we don't actually need to consider the value of the NA.

On the other hand, True & NA is NA. The result depends on whether the NA really is True or False, since True & True is True, but True & False is False, so we can't determine the output.

This differs from how np.nan behaves in logical operations. Pandas treated np.nan is always false in the output.

In or

.. ipython:: python

   pd.Series([True, False, np.nan], dtype="object") | True
   pd.Series([True, False, np.nan], dtype="boolean") | True

In and

.. ipython:: python

   pd.Series([True, False, np.nan], dtype="object") & True
   pd.Series([True, False, np.nan], dtype="boolean") & True