-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathnumeric.py
418 lines (342 loc) · 13 KB
/
numeric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from __future__ import annotations
from typing import (
Callable,
Hashable,
)
import warnings
import numpy as np
from pandas._libs import (
index as libindex,
lib,
)
from pandas._typing import (
Dtype,
npt,
)
from pandas.util._decorators import (
cache_readonly,
doc,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import (
is_dtype_equal,
is_float_dtype,
is_integer_dtype,
is_numeric_dtype,
is_scalar,
is_signed_integer_dtype,
is_unsigned_integer_dtype,
pandas_dtype,
)
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.indexes.base import (
Index,
maybe_extract_name,
)
class NumericIndex(Index):
"""
Immutable sequence used for indexing and alignment. The basic object
storing axis labels for all pandas objects. NumericIndex is a special case
of `Index` with purely numpy int/uint/float labels.
.. versionadded:: 1.4.0
Parameters
----------
data : array-like (1-dimensional)
dtype : NumPy dtype (default: None)
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
Attributes
----------
None
Methods
-------
None
See Also
--------
Index : The base pandas Index type.
Int64Index : Index of purely int64 labels (deprecated).
UInt64Index : Index of purely uint64 labels (deprecated).
Float64Index : Index of purely float64 labels (deprecated).
Notes
-----
An NumericIndex instance can **only** contain numpy int64/32/16/8, uint64/32/16/8 or
float64/32/16 dtype. In particular, ``NumericIndex`` *can not* hold Pandas numeric
dtypes (:class:`Int64Dtype`, :class:`Int32Dtype` etc.).
"""
_typ = "numericindex"
_values: np.ndarray
_default_dtype: np.dtype | None = None
_dtype_validation_metadata: tuple[Callable[..., bool], str] = (
is_numeric_dtype,
"numeric type",
)
_is_numeric_dtype = True
_can_hold_strings = False
_is_backward_compat_public_numeric_index: bool = True
_engine_types: dict[np.dtype, type[libindex.IndexEngine]] = {
np.dtype(np.int8): libindex.Int8Engine,
np.dtype(np.int16): libindex.Int16Engine,
np.dtype(np.int32): libindex.Int32Engine,
np.dtype(np.int64): libindex.Int64Engine,
np.dtype(np.uint8): libindex.UInt8Engine,
np.dtype(np.uint16): libindex.UInt16Engine,
np.dtype(np.uint32): libindex.UInt32Engine,
np.dtype(np.uint64): libindex.UInt64Engine,
np.dtype(np.float32): libindex.Float32Engine,
np.dtype(np.float64): libindex.Float64Engine,
np.dtype(np.complex64): libindex.Complex64Engine,
np.dtype(np.complex128): libindex.Complex128Engine,
}
@property
def _engine_type(self) -> type[libindex.IndexEngine]:
# error: Invalid index type "Union[dtype[Any], ExtensionDtype]" for
# "Dict[dtype[Any], Type[IndexEngine]]"; expected type "dtype[Any]"
return self._engine_types[self.dtype] # type: ignore[index]
@cache_readonly
def inferred_type(self) -> str:
return {
"i": "integer",
"u": "integer",
"f": "floating",
"c": "complex",
}[self.dtype.kind]
def __new__(
cls, data=None, dtype: Dtype | None = None, copy=False, name=None
) -> NumericIndex:
name = maybe_extract_name(name, data, cls)
subarr = cls._ensure_array(data, dtype, copy)
return cls._simple_new(subarr, name=name)
@classmethod
def _ensure_array(cls, data, dtype, copy: bool):
"""
Ensure we have a valid array to pass to _simple_new.
"""
cls._validate_dtype(dtype)
if not isinstance(data, (np.ndarray, Index)):
# Coerce to ndarray if not already ndarray or Index
if is_scalar(data):
raise cls._scalar_data_error(data)
# other iterable of some kind
if not isinstance(data, (ABCSeries, list, tuple)):
data = list(data)
orig = data
data = np.asarray(data, dtype=dtype)
if dtype is None and data.dtype.kind == "f":
if cls is UInt64Index and (data >= 0).all():
# https://github.com/numpy/numpy/issues/19146
data = np.asarray(orig, dtype=np.uint64)
if issubclass(data.dtype.type, str):
cls._string_data_error(data)
dtype = cls._ensure_dtype(dtype)
if copy or not is_dtype_equal(data.dtype, dtype):
# TODO: the try/except below is because it's difficult to predict the error
# and/or error message from different combinations of data and dtype.
# Efforts to avoid this try/except welcome.
# See https://github.com/pandas-dev/pandas/pull/41153#discussion_r676206222
try:
subarr = np.array(data, dtype=dtype, copy=copy)
cls._validate_dtype(subarr.dtype)
except (TypeError, ValueError):
raise ValueError(f"data is not compatible with {cls.__name__}")
cls._assert_safe_casting(data, subarr)
else:
subarr = data
if subarr.ndim > 1:
# GH#13601, GH#20285, GH#27125
raise ValueError("Index data must be 1-dimensional")
subarr = np.asarray(subarr)
return subarr
@classmethod
def _validate_dtype(cls, dtype: Dtype | None) -> None:
if dtype is None:
return
validation_func, expected = cls._dtype_validation_metadata
if not validation_func(dtype):
raise ValueError(
f"Incorrect `dtype` passed: expected {expected}, received {dtype}"
)
@classmethod
def _ensure_dtype(cls, dtype: Dtype | None) -> np.dtype | None:
"""
Ensure int64 dtype for Int64Index etc. but allow int32 etc. for NumericIndex.
Assumes dtype has already been validated.
"""
if dtype is None:
return cls._default_dtype
dtype = pandas_dtype(dtype)
assert isinstance(dtype, np.dtype)
if cls._is_backward_compat_public_numeric_index:
# dtype for NumericIndex
return dtype
else:
# dtype for Int64Index, UInt64Index etc. Needed for backwards compat.
return cls._default_dtype
# ----------------------------------------------------------------
# Indexing Methods
# error: Decorated property not supported
@cache_readonly # type: ignore[misc]
@doc(Index._should_fallback_to_positional)
def _should_fallback_to_positional(self) -> bool:
return False
@doc(Index._convert_slice_indexer)
def _convert_slice_indexer(self, key: slice, kind: str, is_frame: bool = False):
# TODO(2.0): once #45324 deprecation is enforced we should be able
# to simplify this.
if is_float_dtype(self.dtype):
assert kind in ["loc", "getitem"]
# TODO: can we write this as a condition based on
# e.g. _should_fallback_to_positional?
# We always treat __getitem__ slicing as label-based
# translate to locations
return self.slice_indexer(key.start, key.stop, key.step)
return super()._convert_slice_indexer(key, kind=kind, is_frame=is_frame)
@doc(Index._maybe_cast_slice_bound)
def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default):
assert kind in ["loc", "getitem", None, lib.no_default]
self._deprecated_arg(kind, "kind", "_maybe_cast_slice_bound")
# we will try to coerce to integers
return self._maybe_cast_indexer(label)
# ----------------------------------------------------------------
@doc(Index._shallow_copy)
def _shallow_copy(self, values, name: Hashable = lib.no_default):
if not self._can_hold_na and values.dtype.kind == "f":
name = self._name if name is lib.no_default else name
# Ensure we are not returning an Int64Index with float data:
return Float64Index._simple_new(values, name=name)
return super()._shallow_copy(values=values, name=name)
def _convert_tolerance(self, tolerance, target):
tolerance = super()._convert_tolerance(tolerance, target)
if not np.issubdtype(tolerance.dtype, np.number):
if tolerance.ndim > 0:
raise ValueError(
f"tolerance argument for {type(self).__name__} must contain "
"numeric elements if it is list type"
)
else:
raise ValueError(
f"tolerance argument for {type(self).__name__} must be numeric "
f"if it is a scalar: {repr(tolerance)}"
)
return tolerance
@classmethod
def _assert_safe_casting(cls, data: np.ndarray, subarr: np.ndarray) -> None:
"""
Ensure incoming data can be represented with matching signed-ness.
Needed if the process of casting data from some accepted dtype to the internal
dtype(s) bears the risk of truncation (e.g. float to int).
"""
if is_integer_dtype(subarr.dtype):
if not np.array_equal(data, subarr):
raise TypeError("Unsafe NumPy casting, you must explicitly cast")
def _format_native_types(
self, *, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs
) -> npt.NDArray[np.object_]:
from pandas.io.formats.format import FloatArrayFormatter
if is_float_dtype(self.dtype):
formatter = FloatArrayFormatter(
self._values,
na_rep=na_rep,
float_format=float_format,
decimal=decimal,
quoting=quoting,
fixed_width=False,
)
return formatter.get_result_as_array()
return super()._format_native_types(
na_rep=na_rep,
float_format=float_format,
decimal=decimal,
quoting=quoting,
**kwargs,
)
_num_index_shared_docs = {}
_num_index_shared_docs[
"class_descr"
] = """
Immutable sequence used for indexing and alignment. The basic object
storing axis labels for all pandas objects. %(klass)s is a special case
of `Index` with purely %(ltype)s labels. %(extra)s.
.. deprecated:: 1.4.0
In pandas v2.0 %(klass)s will be removed and :class:`NumericIndex` used instead.
%(klass)s will remain fully functional for the duration of pandas 1.x.
Parameters
----------
data : array-like (1-dimensional)
dtype : NumPy dtype (default: %(dtype)s)
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
Attributes
----------
None
Methods
-------
None
See Also
--------
Index : The base pandas Index type.
NumericIndex : Index of numpy int/uint/float data.
Notes
-----
An Index instance can **only** contain hashable objects.
"""
class IntegerIndex(NumericIndex):
"""
This is an abstract class for Int64Index, UInt64Index.
"""
_is_backward_compat_public_numeric_index: bool = False
@property
def asi8(self) -> npt.NDArray[np.int64]:
# do not cache or you'll create a memory leak
warnings.warn(
"Index.asi8 is deprecated and will be removed in a future version.",
FutureWarning,
stacklevel=find_stack_level(),
)
return self._values.view(self._default_dtype)
class Int64Index(IntegerIndex):
_index_descr_args = {
"klass": "Int64Index",
"ltype": "integer",
"dtype": "int64",
"extra": "",
}
__doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args
_typ = "int64index"
_default_dtype = np.dtype(np.int64)
_dtype_validation_metadata = (is_signed_integer_dtype, "signed integer")
@property
def _engine_type(self) -> type[libindex.Int64Engine]:
return libindex.Int64Engine
class UInt64Index(IntegerIndex):
_index_descr_args = {
"klass": "UInt64Index",
"ltype": "unsigned integer",
"dtype": "uint64",
"extra": "",
}
__doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args
_typ = "uint64index"
_default_dtype = np.dtype(np.uint64)
_dtype_validation_metadata = (is_unsigned_integer_dtype, "unsigned integer")
@property
def _engine_type(self) -> type[libindex.UInt64Engine]:
return libindex.UInt64Engine
class Float64Index(NumericIndex):
_index_descr_args = {
"klass": "Float64Index",
"dtype": "float64",
"ltype": "float",
"extra": "",
}
__doc__ = _num_index_shared_docs["class_descr"] % _index_descr_args
_typ = "float64index"
_default_dtype = np.dtype(np.float64)
_dtype_validation_metadata = (is_float_dtype, "float")
_is_backward_compat_public_numeric_index: bool = False
@property
def _engine_type(self) -> type[libindex.Float64Engine]:
return libindex.Float64Engine