-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathaccessors.py
258 lines (198 loc) · 7.57 KB
/
accessors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
datetimelike delegation
"""
import numpy as np
from pandas.core.dtypes.common import (
is_period_arraylike,
is_datetime_arraylike, is_integer_dtype,
is_datetime64_dtype, is_datetime64tz_dtype,
is_timedelta64_dtype, is_categorical_dtype,
is_list_like)
from pandas.core.base import PandasDelegate, NoNewAttributesMixin
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas._libs.period import IncompatibleFrequency # noqa
from pandas.core.indexes.period import PeriodIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.algorithms import take_1d
def is_datetimelike(data):
"""
return a boolean if we can be successfully converted to a datetimelike
"""
try:
maybe_to_datetimelike(data)
return True
except (Exception):
pass
return False
def maybe_to_datetimelike(data, copy=False):
"""
return a DelegatedClass of a Series that is datetimelike
(e.g. datetime64[ns],timedelta64[ns] dtype or a Series of Periods)
raise TypeError if this is not possible.
Parameters
----------
data : Series
copy : boolean, default False
copy the input data
Returns
-------
DelegatedClass
"""
from pandas import Series
if not isinstance(data, Series):
raise TypeError("cannot convert an object of type {0} to a "
"datetimelike index".format(type(data)))
index = data.index
name = data.name
orig = data if is_categorical_dtype(data) else None
if orig is not None:
data = orig.values.categories
if is_datetime64_dtype(data.dtype):
return DatetimeProperties(DatetimeIndex(data, copy=copy),
index, name=name, orig=orig)
elif is_datetime64tz_dtype(data.dtype):
return DatetimeProperties(DatetimeIndex(data, copy=copy),
index, data.name, orig=orig)
elif is_timedelta64_dtype(data.dtype):
return TimedeltaProperties(TimedeltaIndex(data, copy=copy), index,
name=name, orig=orig)
else:
if is_period_arraylike(data):
return PeriodProperties(PeriodIndex(data, copy=copy), index,
name=name, orig=orig)
if is_datetime_arraylike(data):
return DatetimeProperties(DatetimeIndex(data, copy=copy), index,
name=name, orig=orig)
raise TypeError("cannot convert an object of type {0} to a "
"datetimelike index".format(type(data)))
class Properties(PandasDelegate, NoNewAttributesMixin):
def __init__(self, values, index, name, orig=None):
self.values = values
self.index = index
self.name = name
self.orig = orig
self._freeze()
def _delegate_property_get(self, name):
from pandas import Series
result = getattr(self.values, name)
# maybe need to upcast (ints)
if isinstance(result, np.ndarray):
if is_integer_dtype(result):
result = result.astype('int64')
elif not is_list_like(result):
return result
result = np.asarray(result)
# blow up if we operate on categories
if self.orig is not None:
result = take_1d(result, self.orig.cat.codes)
# return the result as a Series, which is by definition a copy
result = Series(result, index=self.index, name=self.name)
# setting this object will show a SettingWithCopyWarning/Error
result.is_copy = ("modifications to a property of a datetimelike "
"object are not supported and are discarded. "
"Change values on the original.")
return result
def _delegate_property_set(self, name, value, *args, **kwargs):
raise ValueError("modifications to a property of a datetimelike "
"object are not supported. Change values on the "
"original.")
def _delegate_method(self, name, *args, **kwargs):
from pandas import Series
method = getattr(self.values, name)
result = method(*args, **kwargs)
if not is_list_like(result):
return result
result = Series(result, index=self.index, name=self.name)
# setting this object will show a SettingWithCopyWarning/Error
result.is_copy = ("modifications to a method of a datetimelike object "
"are not supported and are discarded. Change "
"values on the original.")
return result
class DatetimeProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Examples
--------
>>> s.dt.hour
>>> s.dt.second
>>> s.dt.quarter
Returns a Series indexed like the original Series.
Raises TypeError if the Series does not contain datetimelike values.
"""
def to_pydatetime(self):
return self.values.to_pydatetime()
@property
def freq(self):
return self.values.inferred_freq
DatetimeProperties._add_delegate_accessors(
delegate=DatetimeIndex,
accessors=DatetimeIndex._datetimelike_ops,
typ='property')
DatetimeProperties._add_delegate_accessors(
delegate=DatetimeIndex,
accessors=DatetimeIndex._datetimelike_methods,
typ='method')
class TimedeltaProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Examples
--------
>>> s.dt.hours
>>> s.dt.seconds
Returns a Series indexed like the original Series.
Raises TypeError if the Series does not contain datetimelike values.
"""
def to_pytimedelta(self):
return self.values.to_pytimedelta()
@property
def components(self):
"""
Return a dataframe of the components (days, hours, minutes,
seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.
Returns
-------
a DataFrame
"""
return self.values.components.set_index(self.index)
@property
def freq(self):
return self.values.inferred_freq
TimedeltaProperties._add_delegate_accessors(
delegate=TimedeltaIndex,
accessors=TimedeltaIndex._datetimelike_ops,
typ='property')
TimedeltaProperties._add_delegate_accessors(
delegate=TimedeltaIndex,
accessors=TimedeltaIndex._datetimelike_methods,
typ='method')
class PeriodProperties(Properties):
"""
Accessor object for datetimelike properties of the Series values.
Examples
--------
>>> s.dt.hour
>>> s.dt.second
>>> s.dt.quarter
Returns a Series indexed like the original Series.
Raises TypeError if the Series does not contain datetimelike values.
"""
PeriodProperties._add_delegate_accessors(
delegate=PeriodIndex,
accessors=PeriodIndex._datetimelike_ops,
typ='property')
PeriodProperties._add_delegate_accessors(
delegate=PeriodIndex,
accessors=PeriodIndex._datetimelike_methods,
typ='method')
class CombinedDatetimelikeProperties(DatetimeProperties, TimedeltaProperties):
# This class is never instantiated, and exists solely for the benefit of
# the Series.dt class property. For Series objects, .dt will always be one
# of the more specific classes above.
__doc__ = DatetimeProperties.__doc__
@classmethod
def _make_accessor(cls, data):
try:
return maybe_to_datetimelike(data)
except Exception:
raise AttributeError("Can only use .dt accessor with "
"datetimelike values")