-
-
Notifications
You must be signed in to change notification settings - Fork 18.5k
/
Copy pathstring_arrow.py
513 lines (420 loc) · 16.5 KB
/
string_arrow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from __future__ import annotations
from collections.abc import Callable # noqa: PDF001
import re
from typing import Union
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._typing import (
Dtype,
NpDtype,
Scalar,
npt,
)
from pandas.compat import (
pa_version_under1p01,
pa_version_under2p0,
pa_version_under3p0,
pa_version_under4p0,
)
from pandas.core.dtypes.common import (
is_bool_dtype,
is_dtype_equal,
is_integer_dtype,
is_object_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.missing import isna
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays.arrow import ArrowExtensionArray
from pandas.core.arrays.boolean import BooleanDtype
from pandas.core.arrays.integer import Int64Dtype
from pandas.core.arrays.numeric import NumericDtype
from pandas.core.arrays.string_ import (
BaseStringArray,
StringDtype,
)
from pandas.core.strings.object_array import ObjectStringArrayMixin
if not pa_version_under1p01:
import pyarrow as pa
import pyarrow.compute as pc
from pandas.core.arrays.arrow._arrow_utils import fallback_performancewarning
ARROW_CMP_FUNCS = {
"eq": pc.equal,
"ne": pc.not_equal,
"lt": pc.less,
"gt": pc.greater,
"le": pc.less_equal,
"ge": pc.greater_equal,
}
ArrowStringScalarOrNAT = Union[str, libmissing.NAType]
def _chk_pyarrow_available() -> None:
if pa_version_under1p01:
msg = "pyarrow>=1.0.0 is required for PyArrow backed ArrowExtensionArray."
raise ImportError(msg)
# TODO: Inherit directly from BaseStringArrayMethods. Currently we inherit from
# ObjectStringArrayMixin because we want to have the object-dtype based methods as
# fallback for the ones that pyarrow doesn't yet support
class ArrowStringArray(
OpsMixin, ArrowExtensionArray, BaseStringArray, ObjectStringArrayMixin
):
"""
Extension array for string data in a ``pyarrow.ChunkedArray``.
.. versionadded:: 1.2.0
.. warning::
ArrowStringArray is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
values : pyarrow.Array or pyarrow.ChunkedArray
The array of data.
Attributes
----------
None
Methods
-------
None
See Also
--------
array
The recommended function for creating a ArrowStringArray.
Series.str
The string methods are available on Series backed by
a ArrowStringArray.
Notes
-----
ArrowStringArray returns a BooleanArray for comparison methods.
Examples
--------
>>> pd.array(['This is', 'some text', None, 'data.'], dtype="string[pyarrow]")
<ArrowStringArray>
['This is', 'some text', <NA>, 'data.']
Length: 4, dtype: string
"""
def __init__(self, values) -> None:
super().__init__(values)
# TODO: Migrate to ArrowDtype instead
self._dtype = StringDtype(storage="pyarrow")
if not pa.types.is_string(self._data.type):
raise ValueError(
"ArrowStringArray requires a PyArrow (chunked) array of string type"
)
@classmethod
def _from_sequence(cls, scalars, dtype: Dtype | None = None, copy: bool = False):
from pandas.core.arrays.masked import BaseMaskedArray
_chk_pyarrow_available()
if dtype and not (isinstance(dtype, str) and dtype == "string"):
dtype = pandas_dtype(dtype)
assert isinstance(dtype, StringDtype) and dtype.storage == "pyarrow"
if isinstance(scalars, BaseMaskedArray):
# avoid costly conversion to object dtype in ensure_string_array and
# numerical issues with Float32Dtype
na_values = scalars._mask
result = scalars._data
result = lib.ensure_string_array(result, copy=copy, convert_na_value=False)
return cls(pa.array(result, mask=na_values, type=pa.string()))
# convert non-na-likes to str
result = lib.ensure_string_array(scalars, copy=copy)
return cls(pa.array(result, type=pa.string(), from_pandas=True))
@classmethod
def _from_sequence_of_strings(
cls, strings, dtype: Dtype | None = None, copy: bool = False
):
return cls._from_sequence(strings, dtype=dtype, copy=copy)
@property
def dtype(self) -> StringDtype: # type: ignore[override]
"""
An instance of 'string[pyarrow]'.
"""
return self._dtype
def __array__(self, dtype: NpDtype | None = None) -> np.ndarray:
"""Correctly construct numpy arrays when passed to `np.asarray()`."""
return self.to_numpy(dtype=dtype)
def to_numpy(
self,
dtype: npt.DTypeLike | None = None,
copy: bool = False,
na_value=lib.no_default,
) -> np.ndarray:
"""
Convert to a NumPy ndarray.
"""
# TODO: copy argument is ignored
result = np.array(self._data, dtype=dtype)
if self._data.null_count > 0:
if na_value is lib.no_default:
if dtype and np.issubdtype(dtype, np.floating):
return result
na_value = self._dtype.na_value
mask = self.isna()
result[mask] = na_value
return result
def _cmp_method(self, other, op):
from pandas.arrays import BooleanArray
pc_func = ARROW_CMP_FUNCS[op.__name__]
if isinstance(other, ArrowStringArray):
result = pc_func(self._data, other._data)
elif isinstance(other, (np.ndarray, list)):
result = pc_func(self._data, other)
elif is_scalar(other):
try:
result = pc_func(self._data, pa.scalar(other))
except (pa.lib.ArrowNotImplementedError, pa.lib.ArrowInvalid):
mask = isna(self) | isna(other)
valid = ~mask
result = np.zeros(len(self), dtype="bool")
result[valid] = op(np.array(self)[valid], other)
return BooleanArray(result, mask)
else:
return NotImplemented
if pa_version_under2p0:
result = result.to_pandas().values
else:
result = result.to_numpy()
return BooleanArray._from_sequence(result)
def insert(self, loc: int, item):
if not isinstance(item, str) and item is not libmissing.NA:
raise TypeError("Scalar must be NA or str")
return super().insert(loc, item)
def _maybe_convert_setitem_value(self, value):
"""Maybe convert value to be pyarrow compatible."""
if is_scalar(value):
if isna(value):
value = None
elif not isinstance(value, str):
raise ValueError("Scalar must be NA or str")
else:
value = np.array(value, dtype=object, copy=True)
value[isna(value)] = None
for v in value:
if not (v is None or isinstance(v, str)):
raise ValueError("Scalar must be NA or str")
return value
def isin(self, values):
if pa_version_under2p0:
fallback_performancewarning(version="2")
return super().isin(values)
value_set = [
pa_scalar.as_py()
for pa_scalar in [pa.scalar(value, from_pandas=True) for value in values]
if pa_scalar.type in (pa.string(), pa.null())
]
# for an empty value_set pyarrow 3.0.0 segfaults and pyarrow 2.0.0 returns True
# for null values, so we short-circuit to return all False array.
if not len(value_set):
return np.zeros(len(self), dtype=bool)
kwargs = {}
if pa_version_under3p0:
# in pyarrow 2.0.0 skip_null is ignored but is a required keyword and raises
# with unexpected keyword argument in pyarrow 3.0.0+
kwargs["skip_null"] = True
result = pc.is_in(self._data, value_set=pa.array(value_set), **kwargs)
# pyarrow 2.0.0 returned nulls, so we explicily specify dtype to convert nulls
# to False
return np.array(result, dtype=np.bool_)
def astype(self, dtype, copy: bool = True):
dtype = pandas_dtype(dtype)
if is_dtype_equal(dtype, self.dtype):
if copy:
return self.copy()
return self
elif isinstance(dtype, NumericDtype):
data = self._data.cast(pa.from_numpy_dtype(dtype.numpy_dtype))
return dtype.__from_arrow__(data)
return super().astype(dtype, copy=copy)
# ------------------------------------------------------------------------
# String methods interface
# error: Cannot determine type of 'na_value'
_str_na_value = StringDtype.na_value # type: ignore[has-type]
def _str_map(
self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True
):
# TODO: de-duplicate with StringArray method. This method is moreless copy and
# paste.
from pandas.arrays import (
BooleanArray,
IntegerArray,
)
if dtype is None:
dtype = self.dtype
if na_value is None:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
constructor: type[IntegerArray] | type[BooleanArray]
if is_integer_dtype(dtype):
constructor = IntegerArray
else:
constructor = BooleanArray
na_value_is_na = isna(na_value)
if na_value_is_na:
na_value = 1
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
# error: Argument 1 to "dtype" has incompatible type
# "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected
# "Type[object]"
dtype=np.dtype(dtype), # type: ignore[arg-type]
)
if not na_value_is_na:
mask[:] = False
return constructor(result, mask)
elif is_string_dtype(dtype) and not is_object_dtype(dtype):
# i.e. StringDtype
result = lib.map_infer_mask(
arr, f, mask.view("uint8"), convert=False, na_value=na_value
)
result = pa.array(result, mask=mask, type=pa.string(), from_pandas=True)
return type(self)(result)
else:
# This is when the result type is object. We reach this when
# -> We know the result type is truly object (e.g. .encode returns bytes
# or .findall returns a list).
# -> We don't know the result type. E.g. `.get` can return anything.
return lib.map_infer_mask(arr, f, mask.view("uint8"))
def _str_contains(self, pat, case=True, flags=0, na=np.nan, regex: bool = True):
if flags:
fallback_performancewarning()
return super()._str_contains(pat, case, flags, na, regex)
if regex:
if pa_version_under4p0 or case is False:
fallback_performancewarning(version="4")
return super()._str_contains(pat, case, flags, na, regex)
else:
result = pc.match_substring_regex(self._data, pat)
else:
if case:
result = pc.match_substring(self._data, pat)
else:
result = pc.match_substring(pc.utf8_upper(self._data), pat.upper())
result = BooleanDtype().__from_arrow__(result)
if not isna(na):
result[isna(result)] = bool(na)
return result
def _str_startswith(self, pat: str, na=None):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_startswith(pat, na)
pat = "^" + re.escape(pat)
return self._str_contains(pat, na=na, regex=True)
def _str_endswith(self, pat: str, na=None):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_endswith(pat, na)
pat = re.escape(pat) + "$"
return self._str_contains(pat, na=na, regex=True)
def _str_replace(
self,
pat: str | re.Pattern,
repl: str | Callable,
n: int = -1,
case: bool = True,
flags: int = 0,
regex: bool = True,
):
if (
pa_version_under4p0
or isinstance(pat, re.Pattern)
or callable(repl)
or not case
or flags
):
fallback_performancewarning(version="4")
return super()._str_replace(pat, repl, n, case, flags, regex)
func = pc.replace_substring_regex if regex else pc.replace_substring
result = func(self._data, pattern=pat, replacement=repl, max_replacements=n)
return type(self)(result)
def _str_match(
self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None
):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_match(pat, case, flags, na)
if not pat.startswith("^"):
pat = "^" + pat
return self._str_contains(pat, case, flags, na, regex=True)
def _str_fullmatch(
self, pat, case: bool = True, flags: int = 0, na: Scalar | None = None
):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_fullmatch(pat, case, flags, na)
if not pat.endswith("$") or pat.endswith("//$"):
pat = pat + "$"
return self._str_match(pat, case, flags, na)
def _str_isalnum(self):
result = pc.utf8_is_alnum(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isalpha(self):
result = pc.utf8_is_alpha(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isdecimal(self):
result = pc.utf8_is_decimal(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isdigit(self):
result = pc.utf8_is_digit(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_islower(self):
result = pc.utf8_is_lower(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isnumeric(self):
result = pc.utf8_is_numeric(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isspace(self):
if pa_version_under2p0:
fallback_performancewarning(version="2")
return super()._str_isspace()
result = pc.utf8_is_space(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_istitle(self):
result = pc.utf8_is_title(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_isupper(self):
result = pc.utf8_is_upper(self._data)
return BooleanDtype().__from_arrow__(result)
def _str_len(self):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_len()
result = pc.utf8_length(self._data)
return Int64Dtype().__from_arrow__(result)
def _str_lower(self):
return type(self)(pc.utf8_lower(self._data))
def _str_upper(self):
return type(self)(pc.utf8_upper(self._data))
def _str_strip(self, to_strip=None):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_strip(to_strip)
if to_strip is None:
result = pc.utf8_trim_whitespace(self._data)
else:
result = pc.utf8_trim(self._data, characters=to_strip)
return type(self)(result)
def _str_lstrip(self, to_strip=None):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_lstrip(to_strip)
if to_strip is None:
result = pc.utf8_ltrim_whitespace(self._data)
else:
result = pc.utf8_ltrim(self._data, characters=to_strip)
return type(self)(result)
def _str_rstrip(self, to_strip=None):
if pa_version_under4p0:
fallback_performancewarning(version="4")
return super()._str_rstrip(to_strip)
if to_strip is None:
result = pc.utf8_rtrim_whitespace(self._data)
else:
result = pc.utf8_rtrim(self._data, characters=to_strip)
return type(self)(result)