-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathv0.24.0.txt
791 lines (555 loc) · 36.5 KB
/
v0.24.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
.. _whatsnew_0240:
v0.24.0 (Month XX, 2018)
------------------------
.. warning::
Starting January 1, 2019, pandas feature releases will support Python 3 only.
See :ref:`install.dropping-27` for more.
.. _whatsnew_0240.enhancements:
New features
~~~~~~~~~~~~
- :func:`merge` now directly allows merge between objects of type ``DataFrame`` and named ``Series``, without the need to convert the ``Series`` object into a ``DataFrame`` beforehand (:issue:`21220`)
- ``ExcelWriter`` now accepts ``mode`` as a keyword argument, enabling append to existing workbooks when using the ``openpyxl`` engine (:issue:`3441`)
.. _whatsnew_0240.enhancements.extension_array_operators:
``ExtensionArray`` operator support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A ``Series`` based on an ``ExtensionArray`` now supports arithmetic and comparison
operators (:issue:`19577`). There are two approaches for providing operator support for an ``ExtensionArray``:
1. Define each of the operators on your ``ExtensionArray`` subclass.
2. Use an operator implementation from pandas that depends on operators that are already defined
on the underlying elements (scalars) of the ``ExtensionArray``.
See the :ref:`ExtensionArray Operator Support
<extending.extension.operator>` documentation section for details on both
ways of adding operator support.
.. _whatsnew_0240.enhancements.intna:
Optional Integer NA Support
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Pandas has gained the ability to hold integer dtypes with missing values. This long requested feature is enabled through the use of :ref:`extension types <extending.extension-types>`.
Here is an example of the usage.
We can construct a ``Series`` with the specified dtype. The dtype string ``Int64`` is a pandas ``ExtensionDtype``. Specifying a list or array using the traditional missing value
marker of ``np.nan`` will infer to integer dtype. The display of the ``Series`` will also use the ``NaN`` to indicate missing values in string outputs. (:issue:`20700`, :issue:`20747`, :issue:`22441`)
.. ipython:: python
s = pd.Series([1, 2, np.nan], dtype='Int64')
s
Operations on these dtypes will propagate ``NaN`` as other pandas operations.
.. ipython:: python
# arithmetic
s + 1
# comparison
s == 1
# indexing
s.iloc[1:3]
# operate with other dtypes
s + s.iloc[1:3].astype('Int8')
# coerce when needed
s + 0.01
These dtypes can operate as part of of ``DataFrame``.
.. ipython:: python
df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')})
df
df.dtypes
These dtypes can be merged & reshaped & casted.
.. ipython:: python
pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes
df['A'].astype(float)
.. warning::
The Integer NA support currently uses the captilized dtype version, e.g. ``Int8`` as compared to the traditional ``int8``. This may be changed at a future date.
.. _whatsnew_0240.enhancements.read_html:
``read_html`` Enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`read_html` previously ignored ``colspan`` and ``rowspan`` attributes.
Now it understands them, treating them as sequences of cells with the same
value. (:issue:`17054`)
.. ipython:: python
result = pd.read_html("""
<table>
<thead>
<tr>
<th>A</th><th>B</th><th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2">1</td><td>2</td>
</tr>
</tbody>
</table>""")
Previous Behavior:
.. code-block:: ipython
In [13]: result
Out [13]:
[ A B C
0 1 2 NaN]
Current Behavior:
.. ipython:: python
result
.. _whatsnew_0240.enhancements.interval:
Storing Interval Data in Series and DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Interval data may now be stored in a ``Series`` or ``DataFrame``, in addition to an
:class:`IntervalIndex` like previously (:issue:`19453`).
.. ipython:: python
ser = pd.Series(pd.interval_range(0, 5))
ser
ser.dtype
Previously, these would be cast to a NumPy array of ``Interval`` objects. In general,
this should result in better performance when storing an array of intervals in
a :class:`Series`.
Note that the ``.values`` of a ``Series`` containing intervals is no longer a NumPy
array, but rather an ``ExtensionArray``:
.. ipython:: python
ser.values
This is the same behavior as ``Series.values`` for categorical data. See
:ref:`whatsnew_0240.api_breaking.interval_values` for more.
.. _whatsnew_0240.enhancements.other:
Other Enhancements
^^^^^^^^^^^^^^^^^^
- :func:`to_datetime` now supports the ``%Z`` and ``%z`` directive when passed into ``format`` (:issue:`13486`)
- :func:`Series.mode` and :func:`DataFrame.mode` now support the ``dropna`` parameter which can be used to specify whether NaN/NaT values should be considered (:issue:`17534`)
- :func:`to_csv` now supports ``compression`` keyword when a file handle is passed. (:issue:`21227`)
- :meth:`Index.droplevel` is now implemented also for flat indexes, for compatibility with :class:`MultiIndex` (:issue:`21115`)
- :meth:`Series.droplevel` and :meth:`DataFrame.droplevel` are now implemented (:issue:`20342`)
- Added support for reading from Google Cloud Storage via the ``gcsfs`` library (:issue:`19454`)
- :func:`to_gbq` and :func:`read_gbq` signature and documentation updated to
reflect changes from the `Pandas-GBQ library version 0.5.0
<https://pandas-gbq.readthedocs.io/en/latest/changelog.html#changelog-0-5-0>`__.
(:issue:`21627`)
- New method :meth:`HDFStore.walk` will recursively walk the group hierarchy of an HDF5 file (:issue:`10932`)
- :func:`read_html` copies cell data across ``colspan`` and ``rowspan``, and it treats all-``th`` table rows as headers if ``header`` kwarg is not given and there is no ``thead`` (:issue:`17054`)
- :meth:`Series.nlargest`, :meth:`Series.nsmallest`, :meth:`DataFrame.nlargest`, and :meth:`DataFrame.nsmallest` now accept the value ``"all"`` for the ``keep`` argument. This keeps all ties for the nth largest/smallest value (:issue:`16818`)
- :class:`IntervalIndex` has gained the :meth:`~IntervalIndex.set_closed` method to change the existing ``closed`` value (:issue:`21670`)
- :func:`~DataFrame.to_csv`, :func:`~Series.to_csv`, :func:`~DataFrame.to_json`, and :func:`~Series.to_json` now support ``compression='infer'`` to infer compression based on filename extension (:issue:`15008`).
The default compression for ``to_csv``, ``to_json``, and ``to_pickle`` methods has been updated to ``'infer'`` (:issue:`22004`).
- :func:`to_timedelta` now supports iso-formated timedelta strings (:issue:`21877`)
- :class:`Series` and :class:`DataFrame` now support :class:`Iterable` in constructor (:issue:`2193`)
- :class:`DatetimeIndex` gained :attr:`DatetimeIndex.timetz` attribute. Returns local time with timezone information. (:issue:`21358`)
- :class:`Resampler` now is iterable like :class:`GroupBy` (:issue:`15314`).
- :ref:`Series.resample` and :ref:`DataFrame.resample` have gained the :meth:`Resampler.quantile` (:issue:`15023`).
.. _whatsnew_0240.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0240.api_breaking.interval_values:
``IntervalIndex.values`` is now an ``IntervalArray``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :attr:`~Interval.values` attribute of an :class:`IntervalIndex` now returns an
``IntervalArray``, rather than a NumPy array of :class:`Interval` objects (:issue:`19453`).
Previous Behavior:
.. code-block:: ipython
In [1]: idx = pd.interval_range(0, 4)
In [2]: idx.values
Out[2]:
array([Interval(0, 1, closed='right'), Interval(1, 2, closed='right'),
Interval(2, 3, closed='right'), Interval(3, 4, closed='right')],
dtype=object)
New Behavior:
.. ipython:: python
idx = pd.interval_range(0, 4)
idx.values
This mirrors ``CategoricalIndex.values``, which returns a ``Categorical``.
For situations where you need an ``ndarray`` of ``Interval`` objects, use
:meth:`numpy.asarray` or ``idx.astype(object)``.
.. ipython:: python
np.asarray(idx)
idx.values.astype(object)
.. _whatsnew_0240.api.timezone_offset_parsing:
Parsing Datetime Strings with Timezone Offsets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, parsing datetime strings with UTC offsets with :func:`to_datetime`
or :class:`DatetimeIndex` would automatically convert the datetime to UTC
without timezone localization. This is inconsistent from parsing the same
datetime string with :class:`Timestamp` which would preserve the UTC
offset in the ``tz`` attribute. Now, :func:`to_datetime` preserves the UTC
offset in the ``tz`` attribute when all the datetime strings have the same
UTC offset (:issue:`17697`, :issue:`11736`, :issue:`22457`)
*Previous Behavior*:
.. code-block:: ipython
In [2]: pd.to_datetime("2015-11-18 15:30:00+05:30")
Out[2]: Timestamp('2015-11-18 10:00:00')
In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30")
Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)')
# Different UTC offsets would automatically convert the datetimes to UTC (without a UTC timezone)
In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype='datetime64[ns]', freq=None)
*Current Behavior*:
.. ipython:: python
pd.to_datetime("2015-11-18 15:30:00+05:30")
pd.Timestamp("2015-11-18 15:30:00+05:30")
Parsing datetime strings with the same UTC offset will preserve the UTC offset in the ``tz``
.. ipython:: python
pd.to_datetime(["2015-11-18 15:30:00+05:30"] * 2)
Parsing datetime strings with different UTC offsets will now create an Index of
``datetime.datetime`` objects with different UTC offsets
.. ipython:: python
idx = pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
idx
idx[0]
idx[1]
Passing ``utc=True`` will mimic the previous behavior but will correctly indicate
that the dates have been converted to UTC
.. ipython:: python
pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"], utc=True)
.. _whatsnew_0240.api_breaking.calendarday:
CalendarDay Offset
^^^^^^^^^^^^^^^^^^
:class:`Day` and associated frequency alias ``'D'`` were documented to represent
a calendar day; however, arithmetic and operations with :class:`Day` sometimes
respected absolute time instead (i.e. ``Day(n)`` and acted identically to ``Timedelta(days=n)``).
*Previous Behavior*:
.. code-block:: ipython
In [2]: ts = pd.Timestamp('2016-10-30 00:00:00', tz='Europe/Helsinki')
# Respects calendar arithmetic
In [3]: pd.date_range(start=ts, freq='D', periods=3)
Out[3]:
DatetimeIndex(['2016-10-30 00:00:00+03:00', '2016-10-31 00:00:00+02:00',
'2016-11-01 00:00:00+02:00'],
dtype='datetime64[ns, Europe/Helsinki]', freq='D')
# Respects absolute arithmetic
In [4]: ts + pd.tseries.frequencies.to_offset('D')
Out[4]: Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')
:class:`CalendarDay` and associated frequency alias ``'CD'`` are now available
and respect calendar day arithmetic while :class:`Day` and frequency alias ``'D'``
will now respect absolute time (:issue:`22274`, :issue:`20596`, :issue:`16980`, :issue:`8774`)
See the :ref:`documentation here <timeseries.dayvscalendarday>` for more information.
Addition with :class:`CalendarDay` across a daylight savings time transition:
.. ipython:: python
ts = pd.Timestamp('2016-10-30 00:00:00', tz='Europe/Helsinki')
ts + pd.offsets.Day(1)
ts + pd.offsets.CalendarDay(1)
.. _whatsnew_0240.api_breaking.period_end_time:
Time values in ``dt.end_time`` and ``to_timestamp(how='end')``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The time values in :class:`Period` and :class:`PeriodIndex` objects are now set
to '23:59:59.999999999' when calling :attr:`Series.dt.end_time`, :attr:`Period.end_time`,
:attr:`PeriodIndex.end_time`, :func:`Period.to_timestamp()` with ``how='end'``,
or :func:`PeriodIndex.to_timestamp()` with ``how='end'`` (:issue:`17157`)
Previous Behavior:
.. code-block:: ipython
In [2]: p = pd.Period('2017-01-01', 'D')
In [3]: pi = pd.PeriodIndex([p])
In [4]: pd.Series(pi).dt.end_time[0]
Out[4]: Timestamp(2017-01-01 00:00:00)
In [5]: p.end_time
Out[5]: Timestamp(2017-01-01 23:59:59.999999999)
Current Behavior:
Calling :attr:`Series.dt.end_time` will now result in a time of '23:59:59.999999999' as
is the case with :attr:`Period.end_time`, for example
.. ipython:: python
p = pd.Period('2017-01-01', 'D')
pi = pd.PeriodIndex([p])
pd.Series(pi).dt.end_time[0]
p.end_time
.. _whatsnew_0240.api.datetimelike.normalize:
Tick DateOffset Normalize Restrictions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Creating a ``Tick`` object (:class:`Day`, :class:`Hour`, :class:`Minute`,
:class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano`) with
`normalize=True` is no longer supported. This prevents unexpected behavior
where addition could fail to be monotone or associative. (:issue:`21427`)
*Previous Behavior*:
.. code-block:: ipython
In [2]: ts = pd.Timestamp('2018-06-11 18:01:14')
In [3]: ts
Out[3]: Timestamp('2018-06-11 18:01:14')
In [4]: tic = pd.offsets.Hour(n=2, normalize=True)
...:
In [5]: tic
Out[5]: <2 * Hours>
In [6]: ts + tic
Out[6]: Timestamp('2018-06-11 00:00:00')
In [7]: ts + tic + tic + tic == ts + (tic + tic + tic)
Out[7]: False
*Current Behavior*:
.. ipython:: python
ts = pd.Timestamp('2018-06-11 18:01:14')
tic = pd.offsets.Hour(n=2)
ts + tic + tic + tic == ts + (tic + tic + tic)
.. _whatsnew_0240.api.datetimelike:
.. _whatsnew_0240.api.period_subtraction:
Period Subtraction
^^^^^^^^^^^^^^^^^^
Subtraction of a ``Period`` from another ``Period`` will give a ``DateOffset``.
instead of an integer (:issue:`21314`)
.. ipython:: python
june = pd.Period('June 2018')
april = pd.Period('April 2018')
june - april
Previous Behavior:
.. code-block:: ipython
In [2]: june = pd.Period('June 2018')
In [3]: april = pd.Period('April 2018')
In [4]: june - april
Out [4]: 2
Similarly, subtraction of a ``Period`` from a ``PeriodIndex`` will now return
an ``Index`` of ``DateOffset`` objects instead of an ``Int64Index``
.. ipython:: python
pi = pd.period_range('June 2018', freq='M', periods=3)
pi - pi[0]
Previous Behavior:
.. code-block:: ipython
In [2]: pi = pd.period_range('June 2018', freq='M', periods=3)
In [3]: pi - pi[0]
Out[3]: Int64Index([0, 1, 2], dtype='int64')
.. _whatsnew_0240.api.timedelta64_subtract_nan
Addition/Subtraction of ``NaN`` from :class:``DataFrame``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding or subtracting ``NaN`` from a :class:`DataFrame` column with
`timedelta64[ns]` dtype will now raise a ``TypeError`` instead of returning
all-``NaT``. This is for compatibility with ``TimedeltaIndex`` and
``Series`` behavior (:issue:`22163`)
.. ipython:: python
df = pd.DataFrame([pd.Timedelta(days=1)])
df - np.nan
Previous Behavior:
.. code-block:: ipython
In [4]: df = pd.DataFrame([pd.Timedelta(days=1)])
In [5]: df - np.nan
Out[5]:
0
0 NaT
.. _whatsnew_0240.api.extension:
ExtensionType Changes
^^^^^^^^^^^^^^^^^^^^^
- ``ExtensionArray`` has gained the abstract methods ``.dropna()`` (:issue:`21185`)
- ``ExtensionDtype`` has gained the ability to instantiate from string dtypes, e.g. ``decimal`` would instantiate a registered ``DecimalDtype``; furthermore
the ``ExtensionDtype`` has gained the method ``construct_array_type`` (:issue:`21185`)
- Added ``ExtensionDtype._is_numeric`` for controlling whether an extension dtype is considered numeric (:issue:`22290`).
- The ``ExtensionArray`` constructor, ``_from_sequence`` now take the keyword arg ``copy=False`` (:issue:`21185`)
- Bug in :meth:`Series.get` for ``Series`` using ``ExtensionArray`` and integer index (:issue:`21257`)
- :meth:`~Series.shift` now dispatches to :meth:`ExtensionArray.shift` (:issue:`22386`)
- :meth:`Series.combine()` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine()` with scalar argument now works for any function type (:issue:`21248`)
- :meth:`Series.astype` and :meth:`DataFrame.astype` now dispatch to :meth:`ExtensionArray.astype` (:issue:`21185:`).
.. _whatsnew_0240.api.incompatibilities:
Series and Index Data-Dtype Incompatibilities
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series`` and ``Index`` constructors now raise when the
data is incompatible with a passed ``dtype=`` (:issue:`15832`)
Previous Behavior:
.. code-block:: ipython
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
0 18446744073709551615
dtype: uint64
Current Behavior:
.. code-block:: ipython
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
...
OverflowError: Trying to coerce negative values to unsigned integers
Datetimelike API Changes
^^^^^^^^^^^^^^^^^^^^^^^^
- For :class:`DatetimeIndex` and :class:`TimedeltaIndex` with non-``None`` ``freq`` attribute, addition or subtraction of integer-dtyped array or ``Index`` will return an object of the same class (:issue:`19959`)
- :class:`DateOffset` objects are now immutable. Attempting to alter one of these will now raise ``AttributeError`` (:issue:`21341`)
- :class:`PeriodIndex` subtraction of another ``PeriodIndex`` will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising a ``TypeError`` (:issue:`20049`)
- :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and ``retbins=True`` (:issue:`19891`)
.. _whatsnew_0240.api.other:
Other API Changes
^^^^^^^^^^^^^^^^^
- :class:`DatetimeIndex` now accepts :class:`Int64Index` arguments as epoch timestamps (:issue:`20997`)
- Accessing a level of a ``MultiIndex`` with a duplicate name (e.g. in
:meth:~MultiIndex.get_level_values) now raises a ``ValueError`` instead of
a ``KeyError`` (:issue:`21678`).
- Invalid construction of ``IntervalDtype`` will now always raise a ``TypeError`` rather than a ``ValueError`` if the subdtype is invalid (:issue:`21185`)
- Trying to reindex a ``DataFrame`` with a non unique ``MultiIndex`` now raises a ``ValueError`` instead of an ``Exception`` (:issue:`21770`)
- :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)
- :class:`Index` subtraction will attempt to operate element-wise instead of raising ``TypeError`` (:issue:`19369`)
- :class:`pandas.io.formats.style.Styler` supports a ``number-format`` property when using :meth:`~pandas.io.formats.style.Styler.to_excel` (:issue:`22015`)
- :meth:`DataFrame.corr` and :meth:`Series.corr` now raise a ``ValueError`` along with a helpful error message instead of a ``KeyError`` when supplied with an invalid method (:issue:`22298`)
.. _whatsnew_0240.deprecations:
Deprecations
~~~~~~~~~~~~
- :meth:`DataFrame.to_stata`, :meth:`read_stata`, :class:`StataReader` and :class:`StataWriter` have deprecated the ``encoding`` argument. The encoding of a Stata dta file is determined by the file type and cannot be changed (:issue:`21244`)
- :meth:`MultiIndex.to_hierarchical` is deprecated and will be removed in a future version (:issue:`21613`)
- :meth:`Series.ptp` is deprecated. Use ``numpy.ptp`` instead (:issue:`21614`)
- :meth:`Series.compress` is deprecated. Use ``Series[condition]`` instead (:issue:`18262`)
- The signature of :meth:`Series.to_csv` has been uniformed to that of doc:meth:`DataFrame.to_csv`: the name of the first argument is now 'path_or_buf', the order of subsequent arguments has changed, the 'header' argument now defaults to True. (:issue:`19715`)
- :meth:`Categorical.from_codes` has deprecated providing float values for the ``codes`` argument. (:issue:`21767`)
- :func:`pandas.read_table` is deprecated. Instead, use :func:`pandas.read_csv` passing ``sep='\t'`` if necessary (:issue:`21948`)
- :meth:`Series.str.cat` has deprecated using arbitrary list-likes *within* list-likes. A list-like container may still contain
many ``Series``, ``Index`` or 1-dimensional ``np.ndarray``, or alternatively, only scalar values. (:issue:`21950`)
.. _whatsnew_0240.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The ``LongPanel`` and ``WidePanel`` classes have been removed (:issue:`10892`)
- :meth:`Series.repeat` has renamed the ``reps`` argument to ``repeats`` (:issue:`14645`)
- Several private functions were removed from the (non-public) module ``pandas.core.common`` (:issue:`22001`)
- Removal of the previously deprecated module ``pandas.core.datetools`` (:issue:`14105`, :issue:`14094`)
- Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a ``ValueError`` (:issue:`14432`)
- :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the ``n`` argument to ``repeats``(:issue:`14645`)
- Removal of the previously deprecated ``as_indexer`` keyword completely from ``str.match()`` (:issue:`22356`,:issue:`6581`)
.. _whatsnew_0240.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Very large improvement in performance of slicing when the index is a :class:`CategoricalIndex`,
both when indexing by label (using .loc) and position(.iloc).
Likewise, slicing a ``CategoricalIndex`` itself (i.e. ``ci[100:200]``) shows similar speed improvements (:issue:`21659`)
- Improved performance of :func:`Series.describe` in case of numeric dtpyes (:issue:`21274`)
- Improved performance of :func:`pandas.core.groupby.GroupBy.rank` when dealing with tied rankings (:issue:`21237`)
- Improved performance of :func:`DataFrame.set_index` with columns consisting of :class:`Period` objects (:issue:`21582`,:issue:`21606`)
- Improved performance of membership checks in :class:`Categorical` and :class:`CategoricalIndex`
(i.e. ``x in cat``-style checks are much faster). :meth:`CategoricalIndex.contains`
is likewise much faster (:issue:`21369`, :issue:`21508`)
- Improved performance of :meth:`HDFStore.groups` (and dependent functions like
:meth:`~HDFStore.keys`. (i.e. ``x in store`` checks are much faster)
(:issue:`21372`)
- Improved the performance of :func:`pandas.get_dummies` with ``sparse=True`` (:issue:`21997`)
.. _whatsnew_0240.docs:
Documentation Changes
~~~~~~~~~~~~~~~~~~~~~
- Added sphinx spelling extension, updated documentation on how to use the spell check (:issue:`21079`)
-
-
.. _whatsnew_0240.bug_fixes:
Bug Fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in :meth:`Categorical.from_codes` where ``NaN`` values in `codes` were silently converted to ``0`` (:issue:`21767`). In the future this will raise a ``ValueError``. Also changes the behavior of `.from_codes([1.1, 2.0])`.
Datetimelike
^^^^^^^^^^^^
- Fixed bug where two :class:`DateOffset` objects with different ``normalize`` attributes could evaluate as equal (:issue:`21404`)
- Fixed bug where :meth:`Timestamp.resolution` incorrectly returned 1-microsecond ``timedelta`` instead of 1-nanosecond :class:`Timedelta` (:issue:`21336`,:issue:`21365`)
- Bug in :func:`to_datetime` that did not consistently return an :class:`Index` when ``box=True`` was specified (:issue:`21864`)
- Bug in :class:`DatetimeIndex` comparisons where string comparisons incorrectly raises ``TypeError`` (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against ``timedelta64[ns]`` dtyped arrays; in some cases ``TypeError`` was incorrectly raised, in others it incorrectly failed to raise (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against object-dtyped arrays (:issue:`22074`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``Timedelta``-like objects (:issue:`22005`,:issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``DateOffset`` objects returning an ``object`` dtype instead of ``datetime64[ns]`` dtype (:issue:`21610`,:issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype comparing against ``NaT`` incorrectly (:issue:`22242`,:issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``Timestamp``-like object incorrectly returned ``datetime64[ns]`` dtype instead of ``timedelta64[ns]`` dtype (:issue:`8554`,:issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``np.datetime64`` object with non-nanosecond unit failing to convert to nanoseconds (:issue:`18874`,:issue:`22163`)
- Bug in :class:`DataFrame` comparisons against ``Timestamp``-like objects failing to raise ``TypeError`` for inequality checks with mismatched types (:issue:`8932`,:issue:`22163`)
- Bug in :class:`DataFrame` with mixed dtypes including ``datetime64[ns]`` incorrectly raising ``TypeError`` on equality comparisons (:issue:`13128`,:issue:`22163`)
- Bug in :meth:`DataFrame.eq` comparison against ``NaT`` incorrectly returning ``True`` or ``NaN`` (:issue:`15697`,:issue:`22163`)
- Bug in :class:`DatetimeIndex` subtraction that incorrectly failed to raise `OverflowError` (:issue:`22492`, :issue:`22508`)
Timedelta
^^^^^^^^^
- Bug in :class:`DataFrame` with ``timedelta64[ns]`` dtype division by ``Timedelta``-like scalar incorrectly returning ``timedelta64[ns]`` dtype instead of ``float64`` dtype (:issue:`20088`,:issue:`22163`)
- Bug in adding a :class:`Index` with object dtype to a :class:`Series` with ``timedelta64[ns]`` dtype incorrectly raising (:issue:`22390`)
- Bug in multiplying a :class:`Series` with numeric dtype against a ``timedelta`` object (:issue:`22390`)
- Bug in :class:`Series` with numeric dtype when adding or subtracting an an array or ``Series`` with ``timedelta64`` dtype (:issue:`22390`)
- Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype ``timedelta64`` (:issue:`22390`)
-
-
-
Timezones
^^^^^^^^^
- Bug in :meth:`DatetimeIndex.shift` where an ``AssertionError`` would raise when shifting across DST (:issue:`8616`)
- Bug in :class:`Timestamp` constructor where passing an invalid timezone offset designator (``Z``) would not raise a ``ValueError`` (:issue:`8910`)
- Bug in :meth:`Timestamp.replace` where replacing at a DST boundary would retain an incorrect offset (:issue:`7825`)
- Bug in :meth:`Series.replace` with ``datetime64[ns, tz]`` data when replacing ``NaT`` (:issue:`11792`)
- Bug in :class:`Timestamp` when passing different string date formats with a timezone offset would produce different timezone offsets (:issue:`12064`)
- Bug when comparing a tz-naive :class:`Timestamp` to a tz-aware :class:`DatetimeIndex` which would coerce the :class:`DatetimeIndex` to tz-naive (:issue:`12601`)
- Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`)
- Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp` to tz-aware (:issue:`13051`)
- Bug in :class:`Index` with ``datetime64[ns, tz]`` dtype that did not localize integer data correctly (:issue:`20964`)
- Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`)
- Fixed bug where :meth:`DataFrame.describe` and :meth:`Series.describe` on tz-aware datetimes did not show `first` and `last` result (:issue:`21328`)
- Bug in :class:`DatetimeIndex` comparisons failing to raise ``TypeError`` when comparing timezone-aware ``DatetimeIndex`` against ``np.datetime64`` (:issue:`22074`)
- Bug in ``DataFrame`` assignment with a timezone-aware scalar (:issue:`19843`)
- Bug in :func:`Dataframe.asof` that raised a ``TypeError`` when attempting to compare tz-naive and tz-aware timestamps (:issue:`21194`)
- Bug when constructing a :class:`DatetimeIndex` with :class:`Timestamp`s constructed with the ``replace`` method across DST (:issue:`18785`)
- Bug when setting a new value with :meth:`DataFrame.loc` with a :class:`DatetimeIndex` with a DST transition (:issue:`18308`, :issue:`20724`)
- Bug in :meth:`DatetimeIndex.unique` that did not re-localize tz-aware dates correctly (:issue:`21737`)
- Bug when indexing a :class:`Series` with a DST transition (:issue:`21846`)
Offsets
^^^^^^^
- Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operatons (:issue:`14774`)
- Bug in :class:`DateOffset` where keyword arguments ``week`` and ``milliseconds`` were accepted and ignored. Passing these will now raise ``ValueError`` (:issue:`19398`)
-
Numeric
^^^^^^^
- Bug in :class:`Series` ``__rmatmul__`` doesn't support matrix vector multiplication (:issue:`21530`)
- Bug in :func:`factorize` fails with read-only array (:issue:`12813`)
- Fixed bug in :func:`unique` handled signed zeros inconsistently: for some inputs 0.0 and -0.0 were treated as equal and for some inputs as different. Now they are treated as equal for all inputs (:issue:`21866`)
- Bug in :meth:`DataFrame.agg`, :meth:`DataFrame.transform` and :meth:`DataFrame.apply` where,
when supplied with a list of functions and ``axis=1`` (e.g. ``df.apply(['sum', 'mean'], axis=1)``),
a ``TypeError`` was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`).
- Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`)
- Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning ``object`` dtype instead of integer dtype (:issue:`22047`,:issue:`22163`)
- Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g. ``df.apply('sum', min_count=1)``), a ``TypeError`` was wrongly raised (:issue:`22376`)
-
Strings
^^^^^^^
-
-
-
Interval
^^^^^^^^
- Bug in the :class:`IntervalIndex` constructor where the ``closed`` parameter did not always override the inferred ``closed`` (:issue:`19370`)
- Bug in the ``IntervalIndex`` repr where a trailing comma was missing after the list of intervals (:issue:`20611`)
- Bug in :class:`Interval` where scalar arithmetic operations did not retain the ``closed`` value (:issue:`22313`)
-
Indexing
^^^^^^^^
- The traceback from a ``KeyError`` when asking ``.loc`` for a single missing label is now shorter and more clear (:issue:`21557`)
- When ``.ix`` is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises a ``KeyError``, consistently with the case of a flat :class:`Int64Index, rather than falling back to positional indexing (:issue:`21593`)
- Bug in :meth:`DatetimeIndex.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
- Bug in :class:`DataFrame` when setting values with ``.loc`` and a timezone aware :class:`DatetimeIndex` (:issue:`11365`)
- ``DataFrame.__getitem__`` now accepts dictionaries and dictionary keys as list-likes of labels, consistently with ``Series.__getitem__`` (:issue:`21294`)
- Fixed ``DataFrame[np.nan]`` when columns are non-unique (:issue:`21428`)
- Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
- Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`)
- Bug where mixed indexes wouldn't allow integers for ``.at`` (:issue:`19860`)
- ``Float64Index.get_loc`` now raises ``KeyError`` when boolean key passed. (:issue:`19087`)
Missing
^^^^^^^
- Bug in :func:`DataFrame.fillna` where a ``ValueError`` would raise when one column contained a ``datetime64[ns, tz]`` dtype (:issue:`15522`)
- Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
- :func:`Series.isin` now treats all nans as equal also for `np.object`-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`)
MultiIndex
^^^^^^^^^^
- Removed compatibility for :class:`MultiIndex` pickles prior to version 0.8.0; compatibility with :class:`MultiIndex` pickles from version 0.13 forward is maintained (:issue:`21654`)
- :meth:`MultiIndex.get_loc_level` (and as a consequence, ``.loc`` on a :class:``MultiIndex``ed object) will now raise a ``KeyError``, rather than returning an empty ``slice``, if asked a label which is present in the ``levels`` but is unused (:issue:`22221`)
- Fix ``TypeError`` in Python 3 when creating :class:`MultiIndex` in which some levels have mixed types, e.g. when some labels are tuples (:issue:`15457`)
I/O
^^^
- :func:`read_html()` no longer ignores all-whitespace ``<tr>`` within ``<thead>`` when considering the ``skiprows`` and ``header`` arguments. Previously, users had to decrease their ``header`` and ``skiprows`` values on such tables to work around the issue. (:issue:`21641`)
- :func:`read_excel()` will correctly show the deprecation warning for previously deprecated ``sheetname`` (:issue:`17994`)
- :func:`read_csv()` will correctly parse timezone-aware datetimes (:issue:`22256`)
-
Plotting
^^^^^^^^
- Bug in :func:`DataFrame.plot.scatter` and :func:`DataFrame.plot.hexbin` caused x-axis label and ticklabels to disappear when colorbar was on in IPython inline backend (:issue:`10611`, :issue:`10678`, and :issue:`20455`)
- Bug in plotting a Series with datetimes using :func:`matplotlib.axes.Axes.scatter` (:issue:`22039`)
Groupby/Resample/Rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :func:`pandas.core.groupby.GroupBy.first` and :func:`pandas.core.groupby.GroupBy.last` with ``as_index=False`` leading to the loss of timezone information (:issue:`15884`)
- Bug in :meth:`DatetimeIndex.resample` when downsampling across a DST boundary (:issue:`8531`)
- Bug where ``ValueError`` is wrongly raised when calling :func:`~pandas.core.groupby.SeriesGroupBy.count` method of a
``SeriesGroupBy`` when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`).
- Multiple bugs in :func:`pandas.core.Rolling.min` with ``closed='left'` and a
datetime-like index leading to incorrect results and also segfault. (:issue:`21704`)
- Bug in :meth:`Resampler.apply` when passing postiional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing ``numpy.timedelta64`` to `loffset` kwarg (:issue:`7687`).
- Bug in :meth:`Resampler.asfreq` when frequency of ``TimedeltaIndex`` is a subperiod of a new frequency (:issue:`13022`).
Sparse
^^^^^^
-
-
-
Reshaping
^^^^^^^^^
- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`)
- Bug in :meth:`Series.combine_first` with ``datetime64[ns, tz]`` dtype which would return tz-naive result (:issue:`21469`)
- Bug in :meth:`Series.where` and :meth:`DataFrame.where` with ``datetime64[ns, tz]`` dtype (:issue:`21546`)
- Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with ``list`` conditionals (:issue:`21891`)
- Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds ``datetime64[ns, tz]`` (:issue:`20380`)
- :func:`pandas.core.groupby.GroupBy.rank` now raises a ``ValueError`` when an invalid value is passed for argument ``na_option`` (:issue:`22124`)
- Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`)
- Bug in :meth:`DataFrame.replace` raises ``RecursionError`` when replacing empty lists (:issue:`22083`)
- Bug in :meth:`Series.replace` and meth:`DataFrame.replace` when dict is used as the `to_replace` value and one key in the dict is is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`)
- Bug in :meth:`DataFrame.drop_duplicates` for empty ``DataFrame`` which incorrectly raises an error (:issue:`20516`)
Build Changes
^^^^^^^^^^^^^
- Building pandas for development now requires ``cython >= 0.28.2`` (:issue:`21688`)
- Testing pandas now requires ``hypothesis>=3.58`` (:issue:22280). You can find `the Hypothesis docs here <https://hypothesis.readthedocs.io/en/latest/index.html>`_, and a pandas-specific introduction :ref:`in the contributing guide <using-hypothesis>` .
-
Other
^^^^^
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a ``text_color_threshold`` parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`)
- Require at least 0.28.2 version of ``cython`` to support read-only memoryviews (:issue:`21688`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` (:issue:`15204`)
- :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` and setting clipping range with ``vmin`` and ``vmax`` (:issue:`21548` and :issue:`21526`). ``NaN`` values are also handled properly.
-
-
-