-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_quantile.py
279 lines (230 loc) · 9.04 KB
/
test_quantile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index
import pandas._testing as tm
@pytest.mark.parametrize(
"interpolation", ["linear", "lower", "higher", "nearest", "midpoint"]
)
@pytest.mark.parametrize(
"a_vals,b_vals",
[
# Ints
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]),
([1, 2, 3, 4], [4, 3, 2, 1]),
([1, 2, 3, 4, 5], [4, 3, 2, 1]),
# Floats
([1.0, 2.0, 3.0, 4.0, 5.0], [5.0, 4.0, 3.0, 2.0, 1.0]),
# Missing data
([1.0, np.nan, 3.0, np.nan, 5.0], [5.0, np.nan, 3.0, np.nan, 1.0]),
([np.nan, 4.0, np.nan, 2.0, np.nan], [np.nan, 4.0, np.nan, 2.0, np.nan]),
# Timestamps
(
list(pd.date_range("1/1/18", freq="D", periods=5)),
list(pd.date_range("1/1/18", freq="D", periods=5))[::-1],
),
# All NA
([np.nan] * 5, [np.nan] * 5),
],
)
@pytest.mark.parametrize("q", [0, 0.25, 0.5, 0.75, 1])
def test_quantile(interpolation, a_vals, b_vals, q):
if interpolation == "nearest" and q == 0.5 and b_vals == [4, 3, 2, 1]:
pytest.skip(
"Unclear numpy expectation for nearest result with equidistant data"
)
a_expected = pd.Series(a_vals).quantile(q, interpolation=interpolation)
b_expected = pd.Series(b_vals).quantile(q, interpolation=interpolation)
df = DataFrame(
{"key": ["a"] * len(a_vals) + ["b"] * len(b_vals), "val": a_vals + b_vals}
)
expected = DataFrame(
[a_expected, b_expected], columns=["val"], index=Index(["a", "b"], name="key")
)
result = df.groupby("key").quantile(q, interpolation=interpolation)
tm.assert_frame_equal(result, expected)
def test_quantile_array():
# https://github.com/pandas-dev/pandas/issues/27526
df = DataFrame({"A": [0, 1, 2, 3, 4]})
result = df.groupby([0, 0, 1, 1, 1]).quantile([0.25])
index = pd.MultiIndex.from_product([[0, 1], [0.25]])
expected = DataFrame({"A": [0.25, 2.50]}, index=index)
tm.assert_frame_equal(result, expected)
df = DataFrame({"A": [0, 1, 2, 3], "B": [4, 5, 6, 7]})
index = pd.MultiIndex.from_product([[0, 1], [0.25, 0.75]])
result = df.groupby([0, 0, 1, 1]).quantile([0.25, 0.75])
expected = DataFrame(
{"A": [0.25, 0.75, 2.25, 2.75], "B": [4.25, 4.75, 6.25, 6.75]}, index=index
)
tm.assert_frame_equal(result, expected)
def test_quantile_array2():
# https://github.com/pandas-dev/pandas/pull/28085#issuecomment-524066959
df = DataFrame(
np.random.RandomState(0).randint(0, 5, size=(10, 3)), columns=list("ABC")
)
result = df.groupby("A").quantile([0.3, 0.7])
expected = DataFrame(
{
"B": [0.9, 2.1, 2.2, 3.4, 1.6, 2.4, 2.3, 2.7, 0.0, 0.0],
"C": [1.2, 2.8, 1.8, 3.0, 0.0, 0.0, 1.9, 3.1, 3.0, 3.0],
},
index=pd.MultiIndex.from_product(
[[0, 1, 2, 3, 4], [0.3, 0.7]], names=["A", None]
),
)
tm.assert_frame_equal(result, expected)
def test_quantile_array_no_sort():
df = DataFrame({"A": [0, 1, 2], "B": [3, 4, 5]})
result = df.groupby([1, 0, 1], sort=False).quantile([0.25, 0.5, 0.75])
expected = DataFrame(
{"A": [0.5, 1.0, 1.5, 1.0, 1.0, 1.0], "B": [3.5, 4.0, 4.5, 4.0, 4.0, 4.0]},
index=pd.MultiIndex.from_product([[1, 0], [0.25, 0.5, 0.75]]),
)
tm.assert_frame_equal(result, expected)
result = df.groupby([1, 0, 1], sort=False).quantile([0.75, 0.25])
expected = DataFrame(
{"A": [1.5, 0.5, 1.0, 1.0], "B": [4.5, 3.5, 4.0, 4.0]},
index=pd.MultiIndex.from_product([[1, 0], [0.75, 0.25]]),
)
tm.assert_frame_equal(result, expected)
def test_quantile_array_multiple_levels():
df = DataFrame(
{"A": [0, 1, 2], "B": [3, 4, 5], "c": ["a", "a", "a"], "d": ["a", "a", "b"]}
)
result = df.groupby(["c", "d"]).quantile([0.25, 0.75])
index = pd.MultiIndex.from_tuples(
[("a", "a", 0.25), ("a", "a", 0.75), ("a", "b", 0.25), ("a", "b", 0.75)],
names=["c", "d", None],
)
expected = DataFrame(
{"A": [0.25, 0.75, 2.0, 2.0], "B": [3.25, 3.75, 5.0, 5.0]}, index=index
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("frame_size", [(2, 3), (100, 10)])
@pytest.mark.parametrize("groupby", [[0], [0, 1]])
@pytest.mark.parametrize("q", [[0.5, 0.6]])
def test_groupby_quantile_with_arraylike_q_and_int_columns(frame_size, groupby, q):
# GH30289
nrow, ncol = frame_size
df = DataFrame(np.array([ncol * [_ % 4] for _ in range(nrow)]), columns=range(ncol))
idx_levels = [list(range(min(nrow, 4)))] * len(groupby) + [q]
idx_codes = [[x for x in range(min(nrow, 4)) for _ in q]] * len(groupby) + [
list(range(len(q))) * min(nrow, 4)
]
expected_index = pd.MultiIndex(
levels=idx_levels, codes=idx_codes, names=groupby + [None]
)
expected_values = [
[float(x)] * (ncol - len(groupby)) for x in range(min(nrow, 4)) for _ in q
]
expected_columns = [x for x in range(ncol) if x not in groupby]
expected = DataFrame(
expected_values, index=expected_index, columns=expected_columns
)
result = df.groupby(groupby).quantile(q)
tm.assert_frame_equal(result, expected)
def test_quantile_raises():
df = DataFrame([["foo", "a"], ["foo", "b"], ["foo", "c"]], columns=["key", "val"])
with pytest.raises(TypeError, match="cannot be performed against 'object' dtypes"):
df.groupby("key").quantile()
def test_quantile_out_of_bounds_q_raises():
# https://github.com/pandas-dev/pandas/issues/27470
df = DataFrame({"a": [0, 0, 0, 1, 1, 1], "b": range(6)})
g = df.groupby([0, 0, 0, 1, 1, 1])
with pytest.raises(ValueError, match="Got '50.0' instead"):
g.quantile(50)
with pytest.raises(ValueError, match="Got '-1.0' instead"):
g.quantile(-1)
def test_quantile_missing_group_values_no_segfaults():
# GH 28662
data = np.array([1.0, np.nan, 1.0])
df = DataFrame({"key": data, "val": range(3)})
# Random segfaults; would have been guaranteed in loop
grp = df.groupby("key")
for _ in range(100):
grp.quantile()
@pytest.mark.parametrize(
"key, val, expected_key, expected_val",
[
([1.0, np.nan, 3.0, np.nan], range(4), [1.0, 3.0], [0.0, 2.0]),
([1.0, np.nan, 2.0, 2.0], range(4), [1.0, 2.0], [0.0, 2.5]),
(["a", "b", "b", np.nan], range(4), ["a", "b"], [0, 1.5]),
([0], [42], [0], [42.0]),
([], [], np.array([], dtype="float64"), np.array([], dtype="float64")),
],
)
def test_quantile_missing_group_values_correct_results(
key, val, expected_key, expected_val
):
# GH 28662, GH 33200, GH 33569
df = DataFrame({"key": key, "val": val})
expected = DataFrame(
expected_val, index=Index(expected_key, name="key"), columns=["val"]
)
grp = df.groupby("key")
result = grp.quantile(0.5)
tm.assert_frame_equal(result, expected)
result = grp.quantile()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
pd.array([1, 0, None] * 2, dtype="Int64"),
pd.array([True, False, None] * 2, dtype="boolean"),
],
)
@pytest.mark.parametrize("q", [0.5, [0.0, 0.5, 1.0]])
def test_groupby_quantile_nullable_array(values, q):
# https://github.com/pandas-dev/pandas/issues/33136
df = DataFrame({"a": ["x"] * 3 + ["y"] * 3, "b": values})
result = df.groupby("a")["b"].quantile(q)
if isinstance(q, list):
idx = pd.MultiIndex.from_product((["x", "y"], q), names=["a", None])
true_quantiles = [0.0, 0.5, 1.0]
else:
idx = Index(["x", "y"], name="a")
true_quantiles = [0.5]
expected = pd.Series(true_quantiles * 2, index=idx, name="b")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("q", [0.5, [0.0, 0.5, 1.0]])
def test_groupby_quantile_skips_invalid_dtype(q):
df = DataFrame({"a": [1], "b": [2.0], "c": ["x"]})
result = df.groupby("a").quantile(q)
expected = df.groupby("a")[["b"]].quantile(q)
tm.assert_frame_equal(result, expected)
def test_groupby_timedelta_quantile():
# GH: 29485
df = DataFrame(
{"value": pd.to_timedelta(np.arange(4), unit="s"), "group": [1, 1, 2, 2]}
)
result = df.groupby("group").quantile(0.99)
expected = DataFrame(
{
"value": [
pd.Timedelta("0 days 00:00:00.990000"),
pd.Timedelta("0 days 00:00:02.990000"),
]
},
index=Index([1, 2], name="group"),
)
tm.assert_frame_equal(result, expected)
def test_columns_groupby_quantile():
# GH 33795
df = DataFrame(
np.arange(12).reshape(3, -1),
index=list("XYZ"),
columns=pd.Series(list("ABAB"), name="col"),
)
result = df.groupby("col", axis=1).quantile(q=[0.8, 0.2])
expected = DataFrame(
[
[1.6, 0.4, 2.6, 1.4],
[5.6, 4.4, 6.6, 5.4],
[9.6, 8.4, 10.6, 9.4],
],
index=list("XYZ"),
columns=Index(
[("A", 0.8), ("A", 0.2), ("B", 0.8), ("B", 0.2)], names=["col", None]
),
)
tm.assert_frame_equal(result, expected)