-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_multilevel.py
2827 lines (2235 loc) · 105 KB
/
test_multilevel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# pylint: disable-msg=W0612,E1101,W0141
from warnings import catch_warnings
import datetime
import itertools
import pytest
import pytz
from numpy.random import randn
import numpy as np
from pandas.core.index import Index, MultiIndex
from pandas import Panel, DataFrame, Series, notna, isna, Timestamp
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
import pandas.core.common as com
import pandas.util.testing as tm
from pandas.compat import (range, lrange, StringIO, lzip, u, product as
cart_product, zip)
import pandas as pd
import pandas._libs.index as _index
class Base(object):
def setup_method(self, method):
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two',
'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
self.frame = DataFrame(np.random.randn(10, 3), index=index,
columns=Index(['A', 'B', 'C'], name='exp'))
self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
labels=[[0, 1, 2, 3]], names=['first'])
# create test series object
arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = lzip(*arrays)
index = MultiIndex.from_tuples(tuples)
s = Series(randn(8), index=index)
s[3] = np.NaN
self.series = s
tm.N = 100
self.tdf = tm.makeTimeDataFrame()
self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month,
lambda x: x.day]).sum()
# use Int64Index, to make sure things work
self.ymd.index.set_levels([lev.astype('i8')
for lev in self.ymd.index.levels],
inplace=True)
self.ymd.index.set_names(['year', 'month', 'day'], inplace=True)
class TestMultiLevel(Base):
def test_append(self):
a, b = self.frame[:5], self.frame[5:]
result = a.append(b)
tm.assert_frame_equal(result, self.frame)
result = a['A'].append(b['A'])
tm.assert_series_equal(result, self.frame['A'])
def test_append_index(self):
idx1 = Index([1.1, 1.2, 1.3])
idx2 = pd.date_range('2011-01-01', freq='D', periods=3,
tz='Asia/Tokyo')
idx3 = Index(['A', 'B', 'C'])
midx_lv2 = MultiIndex.from_arrays([idx1, idx2])
midx_lv3 = MultiIndex.from_arrays([idx1, idx2, idx3])
result = idx1.append(midx_lv2)
# see gh-7112
tz = pytz.timezone('Asia/Tokyo')
expected_tuples = [(1.1, tz.localize(datetime.datetime(2011, 1, 1))),
(1.2, tz.localize(datetime.datetime(2011, 1, 2))),
(1.3, tz.localize(datetime.datetime(2011, 1, 3)))]
expected = Index([1.1, 1.2, 1.3] + expected_tuples)
tm.assert_index_equal(result, expected)
result = midx_lv2.append(idx1)
expected = Index(expected_tuples + [1.1, 1.2, 1.3])
tm.assert_index_equal(result, expected)
result = midx_lv2.append(midx_lv2)
expected = MultiIndex.from_arrays([idx1.append(idx1),
idx2.append(idx2)])
tm.assert_index_equal(result, expected)
result = midx_lv2.append(midx_lv3)
tm.assert_index_equal(result, expected)
result = midx_lv3.append(midx_lv2)
expected = Index._simple_new(
np.array([(1.1, tz.localize(datetime.datetime(2011, 1, 1)), 'A'),
(1.2, tz.localize(datetime.datetime(2011, 1, 2)), 'B'),
(1.3, tz.localize(datetime.datetime(2011, 1, 3)), 'C')] +
expected_tuples), None)
tm.assert_index_equal(result, expected)
def test_dataframe_constructor(self):
multi = DataFrame(np.random.randn(4, 4),
index=[np.array(['a', 'a', 'b', 'b']),
np.array(['x', 'y', 'x', 'y'])])
assert isinstance(multi.index, MultiIndex)
assert not isinstance(multi.columns, MultiIndex)
multi = DataFrame(np.random.randn(4, 4),
columns=[['a', 'a', 'b', 'b'],
['x', 'y', 'x', 'y']])
assert isinstance(multi.columns, MultiIndex)
def test_series_constructor(self):
multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(
['x', 'y', 'x', 'y'])])
assert isinstance(multi.index, MultiIndex)
multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']])
assert isinstance(multi.index, MultiIndex)
multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'],
['x', 'y', 'x', 'y']])
assert isinstance(multi.index, MultiIndex)
def test_reindex_level(self):
# axis=0
month_sums = self.ymd.sum(level='month')
result = month_sums.reindex(self.ymd.index, level=1)
expected = self.ymd.groupby(level='month').transform(np.sum)
tm.assert_frame_equal(result, expected)
# Series
result = month_sums['A'].reindex(self.ymd.index, level=1)
expected = self.ymd['A'].groupby(level='month').transform(np.sum)
tm.assert_series_equal(result, expected, check_names=False)
# axis=1
month_sums = self.ymd.T.sum(axis=1, level='month')
result = month_sums.reindex(columns=self.ymd.index, level=1)
expected = self.ymd.groupby(level='month').transform(np.sum).T
tm.assert_frame_equal(result, expected)
def test_binops_level(self):
def _check_op(opname):
op = getattr(DataFrame, opname)
month_sums = self.ymd.sum(level='month')
result = op(self.ymd, month_sums, level='month')
broadcasted = self.ymd.groupby(level='month').transform(np.sum)
expected = op(self.ymd, broadcasted)
tm.assert_frame_equal(result, expected)
# Series
op = getattr(Series, opname)
result = op(self.ymd['A'], month_sums['A'], level='month')
broadcasted = self.ymd['A'].groupby(level='month').transform(
np.sum)
expected = op(self.ymd['A'], broadcasted)
expected.name = 'A'
tm.assert_series_equal(result, expected)
_check_op('sub')
_check_op('add')
_check_op('mul')
_check_op('div')
def test_pickle(self):
def _test_roundtrip(frame):
unpickled = tm.round_trip_pickle(frame)
tm.assert_frame_equal(frame, unpickled)
_test_roundtrip(self.frame)
_test_roundtrip(self.frame.T)
_test_roundtrip(self.ymd)
_test_roundtrip(self.ymd.T)
def test_reindex(self):
expected = self.frame.iloc[[0, 3]]
reindexed = self.frame.loc[[('foo', 'one'), ('bar', 'one')]]
tm.assert_frame_equal(reindexed, expected)
with catch_warnings(record=True):
reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]]
tm.assert_frame_equal(reindexed, expected)
def test_reindex_preserve_levels(self):
new_index = self.ymd.index[::10]
chunk = self.ymd.reindex(new_index)
assert chunk.index is new_index
chunk = self.ymd.loc[new_index]
assert chunk.index is new_index
with catch_warnings(record=True):
chunk = self.ymd.ix[new_index]
assert chunk.index is new_index
ymdT = self.ymd.T
chunk = ymdT.reindex(columns=new_index)
assert chunk.columns is new_index
chunk = ymdT.loc[:, new_index]
assert chunk.columns is new_index
def test_repr_to_string(self):
repr(self.frame)
repr(self.ymd)
repr(self.frame.T)
repr(self.ymd.T)
buf = StringIO()
self.frame.to_string(buf=buf)
self.ymd.to_string(buf=buf)
self.frame.T.to_string(buf=buf)
self.ymd.T.to_string(buf=buf)
def test_repr_name_coincide(self):
index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')],
names=['a', 'b', 'c'])
df = DataFrame({'value': [0, 1]}, index=index)
lines = repr(df).split('\n')
assert lines[2].startswith('a 0 foo')
def test_getitem_simple(self):
df = self.frame.T
col = df['foo', 'one']
tm.assert_almost_equal(col.values, df.values[:, 0])
with pytest.raises(KeyError):
df[('foo', 'four')]
with pytest.raises(KeyError):
df['foobar']
def test_series_getitem(self):
s = self.ymd['A']
result = s[2000, 3]
# TODO(wesm): unused?
# result2 = s.loc[2000, 3]
expected = s.reindex(s.index[42:65])
expected.index = expected.index.droplevel(0).droplevel(0)
tm.assert_series_equal(result, expected)
result = s[2000, 3, 10]
expected = s[49]
assert result == expected
# fancy
expected = s.reindex(s.index[49:51])
result = s.loc[[(2000, 3, 10), (2000, 3, 13)]]
tm.assert_series_equal(result, expected)
with catch_warnings(record=True):
result = s.ix[[(2000, 3, 10), (2000, 3, 13)]]
tm.assert_series_equal(result, expected)
# key error
pytest.raises(KeyError, s.__getitem__, (2000, 3, 4))
def test_series_getitem_corner(self):
s = self.ymd['A']
# don't segfault, GH #495
# out of bounds access
pytest.raises(IndexError, s.__getitem__, len(self.ymd))
# generator
result = s[(x > 0 for x in s)]
expected = s[s > 0]
tm.assert_series_equal(result, expected)
def test_series_setitem(self):
s = self.ymd['A']
s[2000, 3] = np.nan
assert isna(s.values[42:65]).all()
assert notna(s.values[:42]).all()
assert notna(s.values[65:]).all()
s[2000, 3, 10] = np.nan
assert isna(s[49])
def test_series_slice_partial(self):
pass
def test_frame_getitem_setitem_boolean(self):
df = self.frame.T.copy()
values = df.values
result = df[df > 0]
expected = df.where(df > 0)
tm.assert_frame_equal(result, expected)
df[df > 0] = 5
values[values > 0] = 5
tm.assert_almost_equal(df.values, values)
df[df == 5] = 0
values[values == 5] = 0
tm.assert_almost_equal(df.values, values)
# a df that needs alignment first
df[df[:-1] < 0] = 2
np.putmask(values[:-1], values[:-1] < 0, 2)
tm.assert_almost_equal(df.values, values)
with tm.assert_raises_regex(TypeError, 'boolean values only'):
df[df * 0] = 2
def test_frame_getitem_setitem_slice(self):
# getitem
result = self.frame.iloc[:4]
expected = self.frame[:4]
tm.assert_frame_equal(result, expected)
# setitem
cp = self.frame.copy()
cp.iloc[:4] = 0
assert (cp.values[:4] == 0).all()
assert (cp.values[4:] != 0).all()
def test_frame_getitem_setitem_multislice(self):
levels = [['t1', 't2'], ['a', 'b', 'c']]
labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id'])
df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx)
result = df.loc[:, 'value']
tm.assert_series_equal(df['value'], result)
with catch_warnings(record=True):
result = df.ix[:, 'value']
tm.assert_series_equal(df['value'], result)
result = df.loc[df.index[1:3], 'value']
tm.assert_series_equal(df['value'][1:3], result)
result = df.loc[:, :]
tm.assert_frame_equal(df, result)
result = df
df.loc[:, 'value'] = 10
result['value'] = 10
tm.assert_frame_equal(df, result)
df.loc[:, :] = 10
tm.assert_frame_equal(df, result)
def test_frame_getitem_multicolumn_empty_level(self):
f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']})
f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'],
['level3 item1', 'level3 item2']]
result = f['level1 item1']
expected = DataFrame([['1'], ['2'], ['3']], index=f.index,
columns=['level3 item1'])
tm.assert_frame_equal(result, expected)
def test_frame_setitem_multi_column(self):
df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'],
[0, 1, 0, 1]])
cp = df.copy()
cp['a'] = cp['b']
tm.assert_frame_equal(cp['a'], cp['b'])
# set with ndarray
cp = df.copy()
cp['a'] = cp['b'].values
tm.assert_frame_equal(cp['a'], cp['b'])
# ---------------------------------------
# #1803
columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')])
df = DataFrame(index=[1, 3, 5], columns=columns)
# Works, but adds a column instead of updating the two existing ones
df['A'] = 0.0 # Doesn't work
assert (df['A'].values == 0).all()
# it broadcasts
df['B', '1'] = [1, 2, 3]
df['A'] = df['B', '1']
sliced_a1 = df['A', '1']
sliced_a2 = df['A', '2']
sliced_b1 = df['B', '1']
tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
assert sliced_a1.name == ('A', '1')
assert sliced_a2.name == ('A', '2')
assert sliced_b1.name == ('B', '1')
def test_getitem_tuple_plus_slice(self):
# GH #671
df = DataFrame({'a': lrange(10),
'b': lrange(10),
'c': np.random.randn(10),
'd': np.random.randn(10)})
idf = df.set_index(['a', 'b'])
result = idf.loc[(0, 0), :]
expected = idf.loc[0, 0]
expected2 = idf.xs((0, 0))
with catch_warnings(record=True):
expected3 = idf.ix[0, 0]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result, expected2)
tm.assert_series_equal(result, expected3)
def test_getitem_setitem_tuple_plus_columns(self):
# GH #1013
df = self.ymd[:5]
result = df.loc[(2000, 1, 6), ['A', 'B', 'C']]
expected = df.loc[2000, 1, 6][['A', 'B', 'C']]
tm.assert_series_equal(result, expected)
def test_xs(self):
xs = self.frame.xs(('bar', 'two'))
xs2 = self.frame.loc[('bar', 'two')]
tm.assert_series_equal(xs, xs2)
tm.assert_almost_equal(xs.values, self.frame.values[4])
# GH 6574
# missing values in returned index should be preserrved
acc = [
('a', 'abcde', 1),
('b', 'bbcde', 2),
('y', 'yzcde', 25),
('z', 'xbcde', 24),
('z', None, 26),
('z', 'zbcde', 25),
('z', 'ybcde', 26),
]
df = DataFrame(acc,
columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2'])
expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index(
['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2'))
result = df.xs('z', level='a1')
tm.assert_frame_equal(result, expected)
def test_xs_partial(self):
result = self.frame.xs('foo')
result2 = self.frame.loc['foo']
expected = self.frame.T['foo'].T
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result, result2)
result = self.ymd.xs((2000, 4))
expected = self.ymd.loc[2000, 4]
tm.assert_frame_equal(result, expected)
# ex from #1796
index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]],
labels=[[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1,
0, 1]])
df = DataFrame(np.random.randn(8, 4), index=index,
columns=list('abcd'))
result = df.xs(['foo', 'one'])
expected = df.loc['foo', 'one']
tm.assert_frame_equal(result, expected)
def test_xs_level(self):
result = self.frame.xs('two', level='second')
expected = self.frame[self.frame.index.get_level_values(1) == 'two']
expected.index = expected.index.droplevel(1)
tm.assert_frame_equal(result, expected)
index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), (
'p', 'q', 'r')])
df = DataFrame(np.random.randn(3, 5), index=index)
result = df.xs('c', level=2)
expected = df[1:2]
expected.index = expected.index.droplevel(2)
tm.assert_frame_equal(result, expected)
# this is a copy in 0.14
result = self.frame.xs('two', level='second')
# setting this will give a SettingWithCopyError
# as we are trying to write a view
def f(x):
x[:] = 10
pytest.raises(com.SettingWithCopyError, f, result)
def test_xs_level_multiple(self):
from pandas import read_table
text = """ A B C D E
one two three four
a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640
a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744
x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838"""
df = read_table(StringIO(text), sep=r'\s+', engine='python')
result = df.xs(('a', 4), level=['one', 'four'])
expected = df.xs('a').xs(4, level='four')
tm.assert_frame_equal(result, expected)
# this is a copy in 0.14
result = df.xs(('a', 4), level=['one', 'four'])
# setting this will give a SettingWithCopyError
# as we are trying to write a view
def f(x):
x[:] = 10
pytest.raises(com.SettingWithCopyError, f, result)
# GH2107
dates = lrange(20111201, 20111205)
ids = 'abcde'
idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)])
idx.names = ['date', 'secid']
df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z'])
rs = df.xs(20111201, level='date')
xp = df.loc[20111201, :]
tm.assert_frame_equal(rs, xp)
def test_xs_level0(self):
from pandas import read_table
text = """ A B C D E
one two three four
a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640
a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744
x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838"""
df = read_table(StringIO(text), sep=r'\s+', engine='python')
result = df.xs('a', level=0)
expected = df.xs('a')
assert len(result) == 2
tm.assert_frame_equal(result, expected)
def test_xs_level_series(self):
s = self.frame['A']
result = s[:, 'two']
expected = self.frame.xs('two', level=1)['A']
tm.assert_series_equal(result, expected)
s = self.ymd['A']
result = s[2000, 5]
expected = self.ymd.loc[2000, 5]['A']
tm.assert_series_equal(result, expected)
# not implementing this for now
pytest.raises(TypeError, s.__getitem__, (2000, slice(3, 4)))
# result = s[2000, 3:4]
# lv =s.index.get_level_values(1)
# expected = s[(lv == 3) | (lv == 4)]
# expected.index = expected.index.droplevel(0)
# tm.assert_series_equal(result, expected)
# can do this though
def test_get_loc_single_level(self):
s = Series(np.random.randn(len(self.single_level)),
index=self.single_level)
for k in self.single_level.values:
s[k]
def test_getitem_toplevel(self):
df = self.frame.T
result = df['foo']
expected = df.reindex(columns=df.columns[:3])
expected.columns = expected.columns.droplevel(0)
tm.assert_frame_equal(result, expected)
result = df['bar']
result2 = df.loc[:, 'bar']
expected = df.reindex(columns=df.columns[3:5])
expected.columns = expected.columns.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result, result2)
def test_getitem_setitem_slice_integers(self):
index = MultiIndex(levels=[[0, 1, 2], [0, 2]],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])
frame = DataFrame(np.random.randn(len(index), 4), index=index,
columns=['a', 'b', 'c', 'd'])
res = frame.loc[1:2]
exp = frame.reindex(frame.index[2:])
tm.assert_frame_equal(res, exp)
frame.loc[1:2] = 7
assert (frame.loc[1:2] == 7).values.all()
series = Series(np.random.randn(len(index)), index=index)
res = series.loc[1:2]
exp = series.reindex(series.index[2:])
tm.assert_series_equal(res, exp)
series.loc[1:2] = 7
assert (series.loc[1:2] == 7).values.all()
def test_getitem_int(self):
levels = [[0, 1], [0, 1, 2]]
labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
index = MultiIndex(levels=levels, labels=labels)
frame = DataFrame(np.random.randn(6, 2), index=index)
result = frame.loc[1]
expected = frame[-3:]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
# raises exception
pytest.raises(KeyError, frame.loc.__getitem__, 3)
# however this will work
result = self.frame.iloc[2]
expected = self.frame.xs(self.frame.index[2])
tm.assert_series_equal(result, expected)
def test_getitem_partial(self):
ymd = self.ymd.T
result = ymd[2000, 2]
expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1])
expected.columns = expected.columns.droplevel(0).droplevel(0)
tm.assert_frame_equal(result, expected)
def test_setitem_change_dtype(self):
dft = self.frame.T
s = dft['foo', 'two']
dft['foo', 'two'] = s > s.median()
tm.assert_series_equal(dft['foo', 'two'], s > s.median())
# assert isinstance(dft._data.blocks[1].items, MultiIndex)
reindexed = dft.reindex(columns=[('foo', 'two')])
tm.assert_series_equal(reindexed['foo', 'two'], s > s.median())
def test_frame_setitem_ix(self):
self.frame.loc[('bar', 'two'), 'B'] = 5
assert self.frame.loc[('bar', 'two'), 'B'] == 5
# with integer labels
df = self.frame.copy()
df.columns = lrange(3)
df.loc[('bar', 'two'), 1] = 7
assert df.loc[('bar', 'two'), 1] == 7
with catch_warnings(record=True):
df = self.frame.copy()
df.columns = lrange(3)
df.ix[('bar', 'two'), 1] = 7
assert df.loc[('bar', 'two'), 1] == 7
def test_fancy_slice_partial(self):
result = self.frame.loc['bar':'baz']
expected = self.frame[3:7]
tm.assert_frame_equal(result, expected)
result = self.ymd.loc[(2000, 2):(2000, 4)]
lev = self.ymd.index.labels[1]
expected = self.ymd[(lev >= 1) & (lev <= 3)]
tm.assert_frame_equal(result, expected)
def test_getitem_partial_column_select(self):
idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
levels=[['a', 'b'], ['x', 'y'], ['p', 'q']])
df = DataFrame(np.random.rand(3, 2), index=idx)
result = df.loc[('a', 'y'), :]
expected = df.loc[('a', 'y')]
tm.assert_frame_equal(result, expected)
result = df.loc[('a', 'y'), [1, 0]]
expected = df.loc[('a', 'y')][[1, 0]]
tm.assert_frame_equal(result, expected)
with catch_warnings(record=True):
result = df.ix[('a', 'y'), [1, 0]]
tm.assert_frame_equal(result, expected)
pytest.raises(KeyError, df.loc.__getitem__,
(('a', 'foo'), slice(None, None)))
def test_delevel_infer_dtype(self):
tuples = [tuple
for tuple in cart_product(
['foo', 'bar'], [10, 20], [1.0, 1.1])]
index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2'])
df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'],
index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled['prm1'])
assert is_float_dtype(deleveled['prm2'])
def test_reset_index_with_drop(self):
deleveled = self.ymd.reset_index(drop=True)
assert len(deleveled.columns) == len(self.ymd.columns)
deleveled = self.series.reset_index()
assert isinstance(deleveled, DataFrame)
assert len(deleveled.columns) == len(self.series.index.levels) + 1
deleveled = self.series.reset_index(drop=True)
assert isinstance(deleveled, Series)
def test_count_level(self):
def _check_counts(frame, axis=0):
index = frame._get_axis(axis)
for i in range(index.nlevels):
result = frame.count(axis=axis, level=i)
expected = frame.groupby(axis=axis, level=i).count()
expected = expected.reindex_like(result).astype('i8')
tm.assert_frame_equal(result, expected)
self.frame.iloc[1, [1, 2]] = np.nan
self.frame.iloc[7, [0, 1]] = np.nan
self.ymd.iloc[1, [1, 2]] = np.nan
self.ymd.iloc[7, [0, 1]] = np.nan
_check_counts(self.frame)
_check_counts(self.ymd)
_check_counts(self.frame.T, axis=1)
_check_counts(self.ymd.T, axis=1)
# can't call with level on regular DataFrame
df = tm.makeTimeDataFrame()
tm.assert_raises_regex(
TypeError, 'hierarchical', df.count, level=0)
self.frame['D'] = 'foo'
result = self.frame.count(level=0, numeric_only=True)
tm.assert_index_equal(result.columns,
pd.Index(['A', 'B', 'C'], name='exp'))
def test_count_level_series(self):
index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two',
'three', 'four']],
labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]])
s = Series(np.random.randn(len(index)), index=index)
result = s.count(level=0)
expected = s.groupby(level=0).count()
tm.assert_series_equal(
result.astype('f8'), expected.reindex(result.index).fillna(0))
result = s.count(level=1)
expected = s.groupby(level=1).count()
tm.assert_series_equal(
result.astype('f8'), expected.reindex(result.index).fillna(0))
def test_count_level_corner(self):
s = self.frame['A'][:0]
result = s.count(level=0)
expected = Series(0, index=s.index.levels[0], name='A')
tm.assert_series_equal(result, expected)
df = self.frame[:0]
result = df.count(level=0)
expected = DataFrame({}, index=s.index.levels[0],
columns=df.columns).fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_get_level_number_out_of_bounds(self):
with tm.assert_raises_regex(IndexError, "Too many levels"):
self.frame.index._get_level_number(2)
with tm.assert_raises_regex(IndexError,
"not a valid level number"):
self.frame.index._get_level_number(-3)
def test_unstack(self):
# just check that it works for now
unstacked = self.ymd.unstack()
unstacked.unstack()
# test that ints work
self.ymd.astype(int).unstack()
# test that int32 work
self.ymd.astype(np.int32).unstack()
def test_unstack_multiple_no_empty_columns(self):
index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (
1, 'baz', 1), (1, 'qux', 1)])
s = Series(np.random.randn(4), index=index)
unstacked = s.unstack([1, 2])
expected = unstacked.dropna(axis=1, how='all')
tm.assert_frame_equal(unstacked, expected)
def test_stack(self):
# regular roundtrip
unstacked = self.ymd.unstack()
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
unlexsorted = self.ymd.sort_index(level=2)
unstacked = unlexsorted.unstack(2)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted[::-1]
unstacked = unlexsorted.unstack(1)
restacked = unstacked.stack().swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
unlexsorted = unlexsorted.swaplevel(0, 1)
unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
restacked = unstacked.stack(0).swaplevel(1, 2)
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
# columns unsorted
unstacked = self.ymd.unstack()
unstacked = unstacked.sort_index(axis=1, ascending=False)
restacked = unstacked.stack()
tm.assert_frame_equal(restacked, self.ymd)
# more than 2 levels in the columns
unstacked = self.ymd.unstack(1).unstack(1)
result = unstacked.stack(1)
expected = self.ymd.unstack()
tm.assert_frame_equal(result, expected)
result = unstacked.stack(2)
expected = self.ymd.unstack(1)
tm.assert_frame_equal(result, expected)
result = unstacked.stack(0)
expected = self.ymd.stack().unstack(1).unstack(1)
tm.assert_frame_equal(result, expected)
# not all levels present in each echelon
unstacked = self.ymd.unstack(2).loc[:, ::3]
stacked = unstacked.stack().stack()
ymd_stacked = self.ymd.stack()
tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))
# stack with negative number
result = self.ymd.unstack(0).stack(-2)
expected = self.ymd.unstack(0).stack(0)
# GH10417
def check(left, right):
tm.assert_series_equal(left, right)
assert not left.index.is_unique
li, ri = left.index, right.index
tm.assert_index_equal(li, ri)
df = DataFrame(np.arange(12).reshape(4, 3),
index=list('abab'),
columns=['1st', '2nd', '3rd'])
mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd', '3rd']],
labels=[np.tile(
np.arange(2).repeat(3), 2), np.tile(
np.arange(3), 4)])
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
df.columns = ['1st', '2nd', '1st']
mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd']], labels=[np.tile(
np.arange(2).repeat(3), 2), np.tile(
[0, 1, 0], 4)])
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
tpls = ('a', 2), ('b', 1), ('a', 1), ('b', 2)
df.index = MultiIndex.from_tuples(tpls)
mi = MultiIndex(levels=[['a', 'b'], [1, 2], ['1st', '2nd']],
labels=[np.tile(
np.arange(2).repeat(3), 2), np.repeat(
[1, 0, 1], [3, 6, 3]), np.tile(
[0, 1, 0], 4)])
left, right = df.stack(), Series(np.arange(12), index=mi)
check(left, right)
def test_unstack_odd_failure(self):
data = """day,time,smoker,sum,len
Fri,Dinner,No,8.25,3.
Fri,Dinner,Yes,27.03,9
Fri,Lunch,No,3.0,1
Fri,Lunch,Yes,13.68,6
Sat,Dinner,No,139.63,45
Sat,Dinner,Yes,120.77,42
Sun,Dinner,No,180.57,57
Sun,Dinner,Yes,66.82,19
Thur,Dinner,No,3.0,1
Thur,Lunch,No,117.32,44
Thur,Lunch,Yes,51.51,17"""
df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker'])
# it works, #2100
result = df.unstack(2)
recons = result.stack()
tm.assert_frame_equal(recons, df)
def test_stack_mixed_dtype(self):
df = self.frame.T
df['foo', 'four'] = 'foo'
df = df.sort_index(level=1, axis=1)
stacked = df.stack()
result = df['foo'].stack().sort_index()
tm.assert_series_equal(stacked['foo'], result, check_names=False)
assert result.name is None
assert stacked['bar'].dtype == np.float_
def test_unstack_bug(self):
df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ',
'activ'],
'exp': ['a', 'b', 'b', 'b', 'a', 'a'],
'barcode': [1, 2, 3, 4, 1, 3],
'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'],
'extra': np.arange(6.)})
result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len)
unstacked = result.unstack()
restacked = unstacked.stack()
tm.assert_series_equal(
restacked, result.reindex(restacked.index).astype(float))
def test_stack_unstack_preserve_names(self):
unstacked = self.frame.unstack()
assert unstacked.index.name == 'first'
assert unstacked.columns.names == ['exp', 'second']
restacked = unstacked.stack()
assert restacked.index.names == self.frame.index.names
def test_unstack_level_name(self):
result = self.frame.unstack('second')
expected = self.frame.unstack(level=1)
tm.assert_frame_equal(result, expected)
def test_stack_level_name(self):
unstacked = self.frame.unstack('second')
result = unstacked.stack('exp')
expected = self.frame.unstack().stack(0)
tm.assert_frame_equal(result, expected)
result = self.frame.stack('exp')
expected = self.frame.stack()
tm.assert_series_equal(result, expected)
def test_stack_unstack_multiple(self):
unstacked = self.ymd.unstack(['year', 'month'])
expected = self.ymd.unstack('year').unstack('month')
tm.assert_frame_equal(unstacked, expected)
assert unstacked.columns.names == expected.columns.names
# series
s = self.ymd['A']
s_unstacked = s.unstack(['year', 'month'])
tm.assert_frame_equal(s_unstacked, expected['A'])
restacked = unstacked.stack(['year', 'month'])
restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
restacked = restacked.sort_index(level=0)
tm.assert_frame_equal(restacked, self.ymd)
assert restacked.index.names == self.ymd.index.names
# GH #451