-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathsql.py
1876 lines (1593 loc) · 61.2 KB
/
sql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Collection of query wrappers / abstractions to both facilitate data
retrieval and to reduce dependency on DB-specific API.
"""
from contextlib import contextmanager
from datetime import date, datetime, time
from functools import partial
import re
from typing import Iterator, Optional, Union, overload
import warnings
import numpy as np
import pandas._libs.lib as lib
from pandas.core.dtypes.common import is_datetime64tz_dtype, is_dict_like, is_list_like
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.missing import isna
from pandas.core.api import DataFrame, Series
from pandas.core.base import PandasObject
from pandas.core.tools.datetimes import to_datetime
class SQLAlchemyRequired(ImportError):
pass
class DatabaseError(IOError):
pass
# -----------------------------------------------------------------------------
# -- Helper functions
_SQLALCHEMY_INSTALLED = None
def _is_sqlalchemy_connectable(con):
global _SQLALCHEMY_INSTALLED
if _SQLALCHEMY_INSTALLED is None:
try:
import sqlalchemy
_SQLALCHEMY_INSTALLED = True
except ImportError:
_SQLALCHEMY_INSTALLED = False
if _SQLALCHEMY_INSTALLED:
import sqlalchemy # noqa: F811
return isinstance(con, sqlalchemy.engine.Connectable)
else:
return False
def _convert_params(sql, params):
"""Convert SQL and params args to DBAPI2.0 compliant format."""
args = [sql]
if params is not None:
if hasattr(params, "keys"): # test if params is a mapping
args += [params]
else:
args += [list(params)]
return args
def _process_parse_dates_argument(parse_dates):
"""Process parse_dates argument for read_sql functions"""
# handle non-list entries for parse_dates gracefully
if parse_dates is True or parse_dates is None or parse_dates is False:
parse_dates = []
elif not hasattr(parse_dates, "__iter__"):
parse_dates = [parse_dates]
return parse_dates
def _handle_date_column(col, utc=None, format=None):
if isinstance(format, dict):
return to_datetime(col, errors="ignore", **format)
else:
# Allow passing of formatting string for integers
# GH17855
if format is None and (
issubclass(col.dtype.type, np.floating)
or issubclass(col.dtype.type, np.integer)
):
format = "s"
if format in ["D", "d", "h", "m", "s", "ms", "us", "ns"]:
return to_datetime(col, errors="coerce", unit=format, utc=utc)
elif is_datetime64tz_dtype(col.dtype):
# coerce to UTC timezone
# GH11216
return to_datetime(col, utc=True)
else:
return to_datetime(col, errors="coerce", format=format, utc=utc)
def _parse_date_columns(data_frame, parse_dates):
"""
Force non-datetime columns to be read as such.
Supports both string formatted and integer timestamp columns.
"""
parse_dates = _process_parse_dates_argument(parse_dates)
# we want to coerce datetime64_tz dtypes for now to UTC
# we could in theory do a 'nice' conversion from a FixedOffset tz
# GH11216
for col_name, df_col in data_frame.items():
if is_datetime64tz_dtype(df_col.dtype) or col_name in parse_dates:
try:
fmt = parse_dates[col_name]
except TypeError:
fmt = None
data_frame[col_name] = _handle_date_column(df_col, format=fmt)
return data_frame
def _wrap_result(data, columns, index_col=None, coerce_float=True, parse_dates=None):
"""Wrap result set of query in a DataFrame."""
frame = DataFrame.from_records(data, columns=columns, coerce_float=coerce_float)
frame = _parse_date_columns(frame, parse_dates)
if index_col is not None:
frame.set_index(index_col, inplace=True)
return frame
def execute(sql, con, cur=None, params=None):
"""
Execute the given SQL query using the provided connection object.
Parameters
----------
sql : string
SQL query to be executed.
con : SQLAlchemy connectable(engine/connection) or sqlite3 connection
Using SQLAlchemy makes it possible to use any DB supported by the
library.
If a DBAPI2 object, only sqlite3 is supported.
cur : deprecated, cursor is obtained from connection, default: None
params : list or tuple, optional, default: None
List of parameters to pass to execute method.
Returns
-------
Results Iterable
"""
if cur is None:
pandas_sql = pandasSQL_builder(con)
else:
pandas_sql = pandasSQL_builder(cur, is_cursor=True)
args = _convert_params(sql, params)
return pandas_sql.execute(*args)
# -----------------------------------------------------------------------------
# -- Read and write to DataFrames
@overload
def read_sql_table(
table_name,
con,
schema=None,
index_col=None,
coerce_float=True,
parse_dates=None,
columns=None,
chunksize: None = None,
) -> DataFrame:
...
@overload
def read_sql_table(
table_name,
con,
schema=None,
index_col=None,
coerce_float=True,
parse_dates=None,
columns=None,
chunksize: int = 1,
) -> Iterator[DataFrame]:
...
def read_sql_table(
table_name,
con,
schema=None,
index_col=None,
coerce_float=True,
parse_dates=None,
columns=None,
chunksize: Optional[int] = None,
) -> Union[DataFrame, Iterator[DataFrame]]:
"""
Read SQL database table into a DataFrame.
Given a table name and a SQLAlchemy connectable, returns a DataFrame.
This function does not support DBAPI connections.
Parameters
----------
table_name : str
Name of SQL table in database.
con : SQLAlchemy connectable or str
A database URI could be provided as as str.
SQLite DBAPI connection mode not supported.
schema : str, default None
Name of SQL schema in database to query (if database flavor
supports this). Uses default schema if None (default).
index_col : str or list of str, optional, default: None
Column(s) to set as index(MultiIndex).
coerce_float : bool, default True
Attempts to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point. Can result in loss of Precision.
parse_dates : list or dict, default None
- List of column names to parse as dates.
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps.
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite.
columns : list, default None
List of column names to select from SQL table.
chunksize : int, default None
If specified, returns an iterator where `chunksize` is the number of
rows to include in each chunk.
Returns
-------
DataFrame or Iterator[DataFrame]
A SQL table is returned as two-dimensional data structure with labeled
axes.
See Also
--------
read_sql_query : Read SQL query into a DataFrame.
read_sql : Read SQL query or database table into a DataFrame.
Notes
-----
Any datetime values with time zone information will be converted to UTC.
Examples
--------
>>> pd.read_sql_table('table_name', 'postgres:///db_name') # doctest:+SKIP
"""
con = _engine_builder(con)
if not _is_sqlalchemy_connectable(con):
raise NotImplementedError(
"read_sql_table only supported for SQLAlchemy connectable."
)
import sqlalchemy
from sqlalchemy.schema import MetaData
meta = MetaData(con, schema=schema)
try:
meta.reflect(only=[table_name], views=True)
except sqlalchemy.exc.InvalidRequestError as err:
raise ValueError(f"Table {table_name} not found") from err
pandas_sql = SQLDatabase(con, meta=meta)
table = pandas_sql.read_table(
table_name,
index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates,
columns=columns,
chunksize=chunksize,
)
if table is not None:
return table
else:
raise ValueError(f"Table {table_name} not found", con)
@overload
def read_sql_query(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
chunksize: None = None,
) -> DataFrame:
...
@overload
def read_sql_query(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
chunksize: int = 1,
) -> Iterator[DataFrame]:
...
def read_sql_query(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
chunksize: Optional[int] = None,
) -> Union[DataFrame, Iterator[DataFrame]]:
"""
Read SQL query into a DataFrame.
Returns a DataFrame corresponding to the result set of the query
string. Optionally provide an `index_col` parameter to use one of the
columns as the index, otherwise default integer index will be used.
Parameters
----------
sql : str SQL query or SQLAlchemy Selectable (select or text object)
SQL query to be executed.
con : SQLAlchemy connectable, str, or sqlite3 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library. If a DBAPI2 object, only sqlite3 is supported.
index_col : str or list of str, optional, default: None
Column(s) to set as index(MultiIndex).
coerce_float : bool, default True
Attempts to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point. Useful for SQL result sets.
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used
to pass parameters is database driver dependent. Check your
database driver documentation for which of the five syntax styles,
described in PEP 249's paramstyle, is supported.
Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}.
parse_dates : list or dict, default: None
- List of column names to parse as dates.
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times, or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps.
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite.
chunksize : int, default None
If specified, return an iterator where `chunksize` is the number of
rows to include in each chunk.
Returns
-------
DataFrame or Iterator[DataFrame]
See Also
--------
read_sql_table : Read SQL database table into a DataFrame.
read_sql : Read SQL query or database table into a DataFrame.
Notes
-----
Any datetime values with time zone information parsed via the `parse_dates`
parameter will be converted to UTC.
"""
pandas_sql = pandasSQL_builder(con)
return pandas_sql.read_query(
sql,
index_col=index_col,
params=params,
coerce_float=coerce_float,
parse_dates=parse_dates,
chunksize=chunksize,
)
@overload
def read_sql(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
columns=None,
chunksize: None = None,
) -> DataFrame:
...
@overload
def read_sql(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
columns=None,
chunksize: int = 1,
) -> Iterator[DataFrame]:
...
def read_sql(
sql,
con,
index_col=None,
coerce_float=True,
params=None,
parse_dates=None,
columns=None,
chunksize: Optional[int] = None,
) -> Union[DataFrame, Iterator[DataFrame]]:
"""
Read SQL query or database table into a DataFrame.
This function is a convenience wrapper around ``read_sql_table`` and
``read_sql_query`` (for backward compatibility). It will delegate
to the specific function depending on the provided input. A SQL query
will be routed to ``read_sql_query``, while a database table name will
be routed to ``read_sql_table``. Note that the delegated function might
have more specific notes about their functionality not listed here.
Parameters
----------
sql : str or SQLAlchemy Selectable (select or text object)
SQL query to be executed or a table name.
con : SQLAlchemy connectable, str, or sqlite3 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible
for engine disposal and connection closure for the SQLAlchemy connectable; str
connections are closed automatically. See
`here <https://docs.sqlalchemy.org/en/13/core/connections.html>`_.
index_col : str or list of str, optional, default: None
Column(s) to set as index(MultiIndex).
coerce_float : bool, default True
Attempts to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets.
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used
to pass parameters is database driver dependent. Check your
database driver documentation for which of the five syntax styles,
described in PEP 249's paramstyle, is supported.
Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}.
parse_dates : list or dict, default: None
- List of column names to parse as dates.
- Dict of ``{column_name: format string}`` where format string is
strftime compatible in case of parsing string times, or is one of
(D, s, ns, ms, us) in case of parsing integer timestamps.
- Dict of ``{column_name: arg dict}``, where the arg dict corresponds
to the keyword arguments of :func:`pandas.to_datetime`
Especially useful with databases without native Datetime support,
such as SQLite.
columns : list, default: None
List of column names to select from SQL table (only used when reading
a table).
chunksize : int, default None
If specified, return an iterator where `chunksize` is the
number of rows to include in each chunk.
Returns
-------
DataFrame or Iterator[DataFrame]
See Also
--------
read_sql_table : Read SQL database table into a DataFrame.
read_sql_query : Read SQL query into a DataFrame.
"""
pandas_sql = pandasSQL_builder(con)
if isinstance(pandas_sql, SQLiteDatabase):
return pandas_sql.read_query(
sql,
index_col=index_col,
params=params,
coerce_float=coerce_float,
parse_dates=parse_dates,
chunksize=chunksize,
)
try:
_is_table_name = pandas_sql.has_table(sql)
except Exception:
# using generic exception to catch errors from sql drivers (GH24988)
_is_table_name = False
if _is_table_name:
pandas_sql.meta.reflect(only=[sql])
return pandas_sql.read_table(
sql,
index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates,
columns=columns,
chunksize=chunksize,
)
else:
return pandas_sql.read_query(
sql,
index_col=index_col,
params=params,
coerce_float=coerce_float,
parse_dates=parse_dates,
chunksize=chunksize,
)
def to_sql(
frame,
name,
con,
schema=None,
if_exists="fail",
index=True,
index_label=None,
chunksize=None,
dtype=None,
method=None,
) -> None:
"""
Write records stored in a DataFrame to a SQL database.
Parameters
----------
frame : DataFrame, Series
name : str
Name of SQL table.
con : SQLAlchemy connectable(engine/connection) or database string URI
or sqlite3 DBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
If a DBAPI2 object, only sqlite3 is supported.
schema : str, optional
Name of SQL schema in database to write to (if database flavor
supports this). If None, use default schema (default).
if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.
index : boolean, default True
Write DataFrame index as a column.
index_label : str or sequence, optional
Column label for index column(s). If None is given (default) and
`index` is True, then the index names are used.
A sequence should be given if the DataFrame uses MultiIndex.
chunksize : int, optional
Specify the number of rows in each batch to be written at a time.
By default, all rows will be written at once.
dtype : dict or scalar, optional
Specifying the datatype for columns. If a dictionary is used, the
keys should be the column names and the values should be the
SQLAlchemy types or strings for the sqlite3 fallback mode. If a
scalar is provided, it will be applied to all columns.
method : {None, 'multi', callable}, optional
Controls the SQL insertion clause used:
- None : Uses standard SQL ``INSERT`` clause (one per row).
- 'multi': Pass multiple values in a single ``INSERT`` clause.
- callable with signature ``(pd_table, conn, keys, data_iter)``.
Details and a sample callable implementation can be found in the
section :ref:`insert method <io.sql.method>`.
.. versionadded:: 0.24.0
"""
if if_exists not in ("fail", "replace", "append"):
raise ValueError(f"'{if_exists}' is not valid for if_exists")
pandas_sql = pandasSQL_builder(con, schema=schema)
if isinstance(frame, Series):
frame = frame.to_frame()
elif not isinstance(frame, DataFrame):
raise NotImplementedError(
"'frame' argument should be either a Series or a DataFrame"
)
pandas_sql.to_sql(
frame,
name,
if_exists=if_exists,
index=index,
index_label=index_label,
schema=schema,
chunksize=chunksize,
dtype=dtype,
method=method,
)
def has_table(table_name, con, schema=None):
"""
Check if DataBase has named table.
Parameters
----------
table_name: string
Name of SQL table.
con: SQLAlchemy connectable(engine/connection) or sqlite3 DBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that
library.
If a DBAPI2 object, only sqlite3 is supported.
schema : string, default None
Name of SQL schema in database to write to (if database flavor supports
this). If None, use default schema (default).
Returns
-------
boolean
"""
pandas_sql = pandasSQL_builder(con, schema=schema)
return pandas_sql.has_table(table_name)
table_exists = has_table
def _engine_builder(con):
"""
Returns a SQLAlchemy engine from a URI (if con is a string)
else it just return con without modifying it.
"""
global _SQLALCHEMY_INSTALLED
if isinstance(con, str):
try:
import sqlalchemy
except ImportError:
_SQLALCHEMY_INSTALLED = False
else:
con = sqlalchemy.create_engine(con)
return con
return con
def pandasSQL_builder(con, schema=None, meta=None, is_cursor=False):
"""
Convenience function to return the correct PandasSQL subclass based on the
provided parameters.
"""
# When support for DBAPI connections is removed,
# is_cursor should not be necessary.
con = _engine_builder(con)
if _is_sqlalchemy_connectable(con):
return SQLDatabase(con, schema=schema, meta=meta)
elif isinstance(con, str):
raise ImportError("Using URI string without sqlalchemy installed.")
else:
return SQLiteDatabase(con, is_cursor=is_cursor)
class SQLTable(PandasObject):
"""
For mapping Pandas tables to SQL tables.
Uses fact that table is reflected by SQLAlchemy to
do better type conversions.
Also holds various flags needed to avoid having to
pass them between functions all the time.
"""
# TODO: support for multiIndex
def __init__(
self,
name,
pandas_sql_engine,
frame=None,
index=True,
if_exists="fail",
prefix="pandas",
index_label=None,
schema=None,
keys=None,
dtype=None,
):
self.name = name
self.pd_sql = pandas_sql_engine
self.prefix = prefix
self.frame = frame
self.index = self._index_name(index, index_label)
self.schema = schema
self.if_exists = if_exists
self.keys = keys
self.dtype = dtype
if frame is not None:
# We want to initialize based on a dataframe
self.table = self._create_table_setup()
else:
# no data provided, read-only mode
self.table = self.pd_sql.get_table(self.name, self.schema)
if self.table is None:
raise ValueError(f"Could not init table '{name}'")
def exists(self):
return self.pd_sql.has_table(self.name, self.schema)
def sql_schema(self):
from sqlalchemy.schema import CreateTable
return str(CreateTable(self.table).compile(self.pd_sql.connectable))
def _execute_create(self):
# Inserting table into database, add to MetaData object
self.table = self.table.tometadata(self.pd_sql.meta)
self.table.create()
def create(self):
if self.exists():
if self.if_exists == "fail":
raise ValueError(f"Table '{self.name}' already exists.")
elif self.if_exists == "replace":
self.pd_sql.drop_table(self.name, self.schema)
self._execute_create()
elif self.if_exists == "append":
pass
else:
raise ValueError(f"'{self.if_exists}' is not valid for if_exists")
else:
self._execute_create()
def _execute_insert(self, conn, keys, data_iter):
"""
Execute SQL statement inserting data
Parameters
----------
conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection
keys : list of str
Column names
data_iter : generator of list
Each item contains a list of values to be inserted
"""
data = [dict(zip(keys, row)) for row in data_iter]
conn.execute(self.table.insert(), data)
def _execute_insert_multi(self, conn, keys, data_iter):
"""
Alternative to _execute_insert for DBs support multivalue INSERT.
Note: multi-value insert is usually faster for analytics DBs
and tables containing a few columns
but performance degrades quickly with increase of columns.
"""
data = [dict(zip(keys, row)) for row in data_iter]
conn.execute(self.table.insert(data))
def insert_data(self):
if self.index is not None:
temp = self.frame.copy()
temp.index.names = self.index
try:
temp.reset_index(inplace=True)
except ValueError as err:
raise ValueError(f"duplicate name in index/columns: {err}") from err
else:
temp = self.frame
column_names = list(map(str, temp.columns))
ncols = len(column_names)
data_list = [None] * ncols
for i, (_, ser) in enumerate(temp.items()):
vals = ser._values
if vals.dtype.kind == "M":
d = vals.to_pydatetime()
elif vals.dtype.kind == "m":
# store as integers, see GH#6921, GH#7076
d = vals.view("i8").astype(object)
else:
d = vals.astype(object)
assert isinstance(d, np.ndarray), type(d)
if ser._can_hold_na:
# Note: this will miss timedeltas since they are converted to int
mask = isna(d)
d[mask] = None
data_list[i] = d
return column_names, data_list
def insert(self, chunksize=None, method=None):
# set insert method
if method is None:
exec_insert = self._execute_insert
elif method == "multi":
exec_insert = self._execute_insert_multi
elif callable(method):
exec_insert = partial(method, self)
else:
raise ValueError(f"Invalid parameter `method`: {method}")
keys, data_list = self.insert_data()
nrows = len(self.frame)
if nrows == 0:
return
if chunksize is None:
chunksize = nrows
elif chunksize == 0:
raise ValueError("chunksize argument should be non-zero")
chunks = int(nrows / chunksize) + 1
with self.pd_sql.run_transaction() as conn:
for i in range(chunks):
start_i = i * chunksize
end_i = min((i + 1) * chunksize, nrows)
if start_i >= end_i:
break
chunk_iter = zip(*[arr[start_i:end_i] for arr in data_list])
exec_insert(conn, keys, chunk_iter)
def _query_iterator(
self, result, chunksize, columns, coerce_float=True, parse_dates=None
):
"""Return generator through chunked result set."""
while True:
data = result.fetchmany(chunksize)
if not data:
break
else:
self.frame = DataFrame.from_records(
data, columns=columns, coerce_float=coerce_float
)
self._harmonize_columns(parse_dates=parse_dates)
if self.index is not None:
self.frame.set_index(self.index, inplace=True)
yield self.frame
def read(self, coerce_float=True, parse_dates=None, columns=None, chunksize=None):
if columns is not None and len(columns) > 0:
from sqlalchemy import select
cols = [self.table.c[n] for n in columns]
if self.index is not None:
for idx in self.index[::-1]:
cols.insert(0, self.table.c[idx])
sql_select = select(cols)
else:
sql_select = self.table.select()
result = self.pd_sql.execute(sql_select)
column_names = result.keys()
if chunksize is not None:
return self._query_iterator(
result,
chunksize,
column_names,
coerce_float=coerce_float,
parse_dates=parse_dates,
)
else:
data = result.fetchall()
self.frame = DataFrame.from_records(
data, columns=column_names, coerce_float=coerce_float
)
self._harmonize_columns(parse_dates=parse_dates)
if self.index is not None:
self.frame.set_index(self.index, inplace=True)
return self.frame
def _index_name(self, index, index_label):
# for writing: index=True to include index in sql table
if index is True:
nlevels = self.frame.index.nlevels
# if index_label is specified, set this as index name(s)
if index_label is not None:
if not isinstance(index_label, list):
index_label = [index_label]
if len(index_label) != nlevels:
raise ValueError(
"Length of 'index_label' should match number of "
f"levels, which is {nlevels}"
)
else:
return index_label
# return the used column labels for the index columns
if (
nlevels == 1
and "index" not in self.frame.columns
and self.frame.index.name is None
):
return ["index"]
else:
return [
l if l is not None else f"level_{i}"
for i, l in enumerate(self.frame.index.names)
]
# for reading: index=(list of) string to specify column to set as index
elif isinstance(index, str):
return [index]
elif isinstance(index, list):
return index
else:
return None
def _get_column_names_and_types(self, dtype_mapper):
column_names_and_types = []
if self.index is not None:
for i, idx_label in enumerate(self.index):
idx_type = dtype_mapper(self.frame.index._get_level_values(i))
column_names_and_types.append((str(idx_label), idx_type, True))
column_names_and_types += [
(str(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False)
for i in range(len(self.frame.columns))
]
return column_names_and_types
def _create_table_setup(self):
from sqlalchemy import Column, PrimaryKeyConstraint, Table
column_names_and_types = self._get_column_names_and_types(self._sqlalchemy_type)
columns = [
Column(name, typ, index=is_index)
for name, typ, is_index in column_names_and_types
]
if self.keys is not None:
if not is_list_like(self.keys):
keys = [self.keys]
else:
keys = self.keys
pkc = PrimaryKeyConstraint(*keys, name=self.name + "_pk")
columns.append(pkc)
schema = self.schema or self.pd_sql.meta.schema
# At this point, attach to new metadata, only attach to self.meta
# once table is created.
from sqlalchemy.schema import MetaData
meta = MetaData(self.pd_sql, schema=schema)
return Table(self.name, meta, *columns, schema=schema)
def _harmonize_columns(self, parse_dates=None):
"""
Make the DataFrame's column types align with the SQL table
column types.
Need to work around limited NA value support. Floats are always
fine, ints must always be floats if there are Null values.
Booleans are hard because converting bool column with None replaces
all Nones with false. Therefore only convert bool if there are no
NA values.
Datetimes should already be converted to np.datetime64 if supported,
but here we also force conversion if required.
"""
parse_dates = _process_parse_dates_argument(parse_dates)
for sql_col in self.table.columns:
col_name = sql_col.name
try:
df_col = self.frame[col_name]
# Handle date parsing upfront; don't try to convert columns
# twice
if col_name in parse_dates:
try:
fmt = parse_dates[col_name]
except TypeError:
fmt = None
self.frame[col_name] = _handle_date_column(df_col, format=fmt)
continue
# the type the dataframe column should have
col_type = self._get_dtype(sql_col.type)
if (