-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathmissing_data.rst
676 lines (444 loc) · 17.9 KB
/
missing_data.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
.. _missing_data:
{{ header }}
*************************
Working with missing data
*************************
Values considered "missing"
~~~~~~~~~~~~~~~~~~~~~~~~~~~
pandas uses different sentinel values to represent a missing (also referred to as NA)
depending on the data type.
``numpy.nan`` for NumPy data types. The disadvantage of using NumPy data types
is that the original data type will be coerced to ``np.float64`` or ``object``.
.. ipython:: python
pd.Series([1, 2], dtype=np.int64).reindex([0, 1, 2])
pd.Series([True, False], dtype=np.bool_).reindex([0, 1, 2])
:class:`NaT` for NumPy ``np.datetime64``, ``np.timedelta64``, and :class:`PeriodDtype`. For typing applications,
use :class:`api.types.NaTType`.
.. ipython:: python
pd.Series([1, 2], dtype=np.dtype("timedelta64[ns]")).reindex([0, 1, 2])
pd.Series([1, 2], dtype=np.dtype("datetime64[ns]")).reindex([0, 1, 2])
pd.Series(["2020", "2020"], dtype=pd.PeriodDtype("D")).reindex([0, 1, 2])
:class:`NA` for :class:`StringDtype`, :class:`Int64Dtype` (and other bit widths),
:class:`Float64Dtype`(and other bit widths), :class:`BooleanDtype` and :class:`ArrowDtype`.
These types will maintain the original data type of the data.
For typing applications, use :class:`api.types.NAType`.
.. ipython:: python
pd.Series([1, 2], dtype="Int64").reindex([0, 1, 2])
pd.Series([True, False], dtype="boolean[pyarrow]").reindex([0, 1, 2])
To detect these missing value, use the :func:`isna` or :func:`notna` methods.
.. ipython:: python
ser = pd.Series([pd.Timestamp("2020-01-01"), pd.NaT])
ser
pd.isna(ser)
.. note::
:func:`isna` or :func:`notna` will also consider ``None`` a missing value.
.. ipython:: python
ser = pd.Series([1, None], dtype=object)
ser
pd.isna(ser)
.. warning::
Equality compaisons between ``np.nan``, :class:`NaT`, and :class:`NA`
do not act like ``None``
.. ipython:: python
None == None # noqa: E711
np.nan == np.nan
pd.NaT == pd.NaT
pd.NA == pd.NA
Therefore, an equality comparison between a :class:`DataFrame` or :class:`Series`
with one of these missing values does not provide the same information as
:func:`isna` or :func:`notna`.
.. ipython:: python
ser = pd.Series([True, None], dtype="boolean[pyarrow]")
ser == pd.NA
pd.isna(ser)
.. _missing_data.NA:
:class:`NA` semantics
~~~~~~~~~~~~~~~~~~~~~
.. warning::
Experimental: the behaviour of :class:`NA`` can still change without warning.
Starting from pandas 1.0, an experimental :class:`NA` value (singleton) is
available to represent scalar missing values. The goal of :class:`NA` is provide a
"missing" indicator that can be used consistently across data types
(instead of ``np.nan``, ``None`` or ``pd.NaT`` depending on the data type).
For example, when having missing values in a :class:`Series` with the nullable integer
dtype, it will use :class:`NA`:
.. ipython:: python
s = pd.Series([1, 2, None], dtype="Int64")
s
s[2]
s[2] is pd.NA
Currently, pandas does not yet use those data types using :class:`NA` by default
a :class:`DataFrame` or :class:`Series`, so you need to specify
the dtype explicitly. An easy way to convert to those dtypes is explained in the
:ref:`conversion section <missing_data.NA.conversion>`.
Propagation in arithmetic and comparison operations
---------------------------------------------------
In general, missing values *propagate* in operations involving :class:`NA`. When
one of the operands is unknown, the outcome of the operation is also unknown.
For example, :class:`NA` propagates in arithmetic operations, similarly to
``np.nan``:
.. ipython:: python
pd.NA + 1
"a" * pd.NA
There are a few special cases when the result is known, even when one of the
operands is ``NA``.
.. ipython:: python
pd.NA ** 0
1 ** pd.NA
In equality and comparison operations, :class:`NA` also propagates. This deviates
from the behaviour of ``np.nan``, where comparisons with ``np.nan`` always
return ``False``.
.. ipython:: python
pd.NA == 1
pd.NA == pd.NA
pd.NA < 2.5
To check if a value is equal to :class:`NA`, use :func:`isna`
.. ipython:: python
pd.isna(pd.NA)
.. note::
An exception on this basic propagation rule are *reductions* (such as the
mean or the minimum), where pandas defaults to skipping missing values. See the
:ref:`calculation section <missing_data.calculations>` for more.
Logical operations
------------------
For logical operations, :class:`NA` follows the rules of the
`three-valued logic <https://en.wikipedia.org/wiki/Three-valued_logic>`__ (or
*Kleene logic*, similarly to R, SQL and Julia). This logic means to only
propagate missing values when it is logically required.
For example, for the logical "or" operation (``|``), if one of the operands
is ``True``, we already know the result will be ``True``, regardless of the
other value (so regardless the missing value would be ``True`` or ``False``).
In this case, :class:`NA` does not propagate:
.. ipython:: python
True | False
True | pd.NA
pd.NA | True
On the other hand, if one of the operands is ``False``, the result depends
on the value of the other operand. Therefore, in this case :class:`NA`
propagates:
.. ipython:: python
False | True
False | False
False | pd.NA
The behaviour of the logical "and" operation (``&``) can be derived using
similar logic (where now :class:`NA` will not propagate if one of the operands
is already ``False``):
.. ipython:: python
False & True
False & False
False & pd.NA
.. ipython:: python
True & True
True & False
True & pd.NA
``NA`` in a boolean context
---------------------------
Since the actual value of an NA is unknown, it is ambiguous to convert NA
to a boolean value.
.. ipython:: python
:okexcept:
bool(pd.NA)
This also means that :class:`NA` cannot be used in a context where it is
evaluated to a boolean, such as ``if condition: ...`` where ``condition`` can
potentially be :class:`NA`. In such cases, :func:`isna` can be used to check
for :class:`NA` or ``condition`` being :class:`NA` can be avoided, for example by
filling missing values beforehand.
A similar situation occurs when using :class:`Series` or :class:`DataFrame` objects in ``if``
statements, see :ref:`gotchas.truth`.
NumPy ufuncs
------------
:attr:`pandas.NA` implements NumPy's ``__array_ufunc__`` protocol. Most ufuncs
work with ``NA``, and generally return ``NA``:
.. ipython:: python
np.log(pd.NA)
np.add(pd.NA, 1)
.. warning::
Currently, ufuncs involving an ndarray and ``NA`` will return an
object-dtype filled with NA values.
.. ipython:: python
a = np.array([1, 2, 3])
np.greater(a, pd.NA)
The return type here may change to return a different array type
in the future.
See :ref:`dsintro.numpy_interop` for more on ufuncs.
.. _missing_data.NA.conversion:
Conversion
^^^^^^^^^^
If you have a :class:`DataFrame` or :class:`Series` using ``np.nan``,
:meth:`Series.convert_dtypes` and :meth:`DataFrame.convert_dtypes`
in :class:`DataFrame` that can convert data to use the data types that use :class:`NA`
such as :class:`Int64Dtype` or :class:`ArrowDtype`. This is especially helpful after reading
in data sets from IO methods where data types were inferred.
In this example, while the dtypes of all columns are changed, we show the results for
the first 10 columns.
.. ipython:: python
import io
data = io.StringIO("a,b\n,True\n2,")
df = pd.read_csv(data)
df.dtypes
df_conv = df.convert_dtypes()
df_conv
df_conv.dtypes
.. _missing.inserting:
Inserting missing data
~~~~~~~~~~~~~~~~~~~~~~
You can insert missing values by simply assigning to a :class:`Series` or :class:`DataFrame`.
The missing value sentinel used will be chosen based on the dtype.
.. ipython:: python
ser = pd.Series([1., 2., 3.])
ser.loc[0] = None
ser
ser = pd.Series([pd.Timestamp("2021"), pd.Timestamp("2021")])
ser.iloc[0] = np.nan
ser
ser = pd.Series([True, False], dtype="boolean[pyarrow]")
ser.iloc[0] = None
ser
For ``object`` types, pandas will use the value given:
.. ipython:: python
s = pd.Series(["a", "b", "c"], dtype=object)
s.loc[0] = None
s.loc[1] = np.nan
s
.. _missing_data.calculations:
Calculations with missing data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Missing values propagate through arithmetic operations between pandas objects.
.. ipython:: python
ser1 = pd.Series([np.nan, np.nan, 2, 3])
ser2 = pd.Series([np.nan, 1, np.nan, 4])
ser1
ser2
ser1 + ser2
The descriptive statistics and computational methods discussed in the
:ref:`data structure overview <basics.stats>` (and listed :ref:`here
<api.series.stats>` and :ref:`here <api.dataframe.stats>`) are all
account for missing data.
When summing data, NA values or empty data will be treated as zero.
.. ipython:: python
pd.Series([np.nan]).sum()
pd.Series([], dtype="float64").sum()
When taking the product, NA values or empty data will be treated as 1.
.. ipython:: python
pd.Series([np.nan]).prod()
pd.Series([], dtype="float64").prod()
Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod`
ignore NA values by default preserve them in the result. This behavior can be changed
with ``skipna``
* Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use ``skipna=False``.
.. ipython:: python
ser = pd.Series([1, np.nan, 3, np.nan])
ser
ser.cumsum()
ser.cumsum(skipna=False)
.. _missing_data.dropna:
Dropping missing data
~~~~~~~~~~~~~~~~~~~~~
:meth:`~DataFrame.dropna` dropa rows or columns with missing data.
.. ipython:: python
df = pd.DataFrame([[np.nan, 1, 2], [1, 2, np.nan], [1, 2, 3]])
df
df.dropna()
df.dropna(axis=1)
ser = pd.Series([1, pd.NA], dtype="int64[pyarrow]")
ser.dropna()
Filling missing data
~~~~~~~~~~~~~~~~~~~~
.. _missing_data.fillna:
Filling by value
----------------
:meth:`~DataFrame.fillna` replaces NA values with non-NA data.
Replace NA with a scalar value
.. ipython:: python
data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")}
df = pd.DataFrame(data)
df
df.fillna(0)
Fill gaps forward or backward
.. ipython:: python
df.ffill()
df.bfill()
.. _missing_data.fillna.limit:
Limit the number of NA values filled
.. ipython:: python
df.ffill(limit=1)
NA values can be replaced with corresponding value from a :class:`Series` or :class:`DataFrame`
where the index and column aligns between the original object and the filled object.
.. ipython:: python
dff = pd.DataFrame(np.arange(30, dtype=np.float64).reshape(10, 3), columns=list("ABC"))
dff.iloc[3:5, 0] = np.nan
dff.iloc[4:6, 1] = np.nan
dff.iloc[5:8, 2] = np.nan
dff
dff.fillna(dff.mean())
.. note::
:meth:`DataFrame.where` can also be used to fill NA values.Same result as above.
.. ipython:: python
dff.where(pd.notna(dff), dff.mean(), axis="columns")
.. _missing_data.interpolate:
Interpolation
-------------
:meth:`DataFrame.interpolate` and :meth:`Series.interpolate` fills NA values
using various interpolation methods.
.. ipython:: python
df = pd.DataFrame(
{
"A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
"B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
}
)
df
df.interpolate()
idx = pd.date_range("2020-01-01", periods=10, freq="D")
data = np.random.default_rng(2).integers(0, 10, 10).astype(np.float64)
ts = pd.Series(data, index=idx)
ts.iloc[[1, 2, 5, 6, 9]] = np.nan
ts
@savefig series_before_interpolate.png
ts.plot()
.. ipython:: python
ts.interpolate()
@savefig series_interpolate.png
ts.interpolate().plot()
Interpolation relative to a :class:`Timestamp` in the :class:`DatetimeIndex`
is available by setting ``method="time"``
.. ipython:: python
ts2 = ts.iloc[[0, 1, 3, 7, 9]]
ts2
ts2.interpolate()
ts2.interpolate(method="time")
For a floating-point index, use ``method='values'``:
.. ipython:: python
idx = [0.0, 1.0, 10.0]
ser = pd.Series([0.0, np.nan, 10.0], idx)
ser
ser.interpolate()
ser.interpolate(method="values")
If you have scipy_ installed, you can pass the name of a 1-d interpolation routine to ``method``.
as specified in the scipy interpolation documentation_ and reference guide_.
The appropriate interpolation method will depend on the data type.
.. tip::
If you are dealing with a time series that is growing at an increasing rate,
use ``method='barycentric'``.
If you have values approximating a cumulative distribution function,
use ``method='pchip'``.
To fill missing values with goal of smooth plotting use ``method='akima'``.
.. ipython:: python
df = pd.DataFrame(
{
"A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
"B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
}
)
df
df.interpolate(method="barycentric")
df.interpolate(method="pchip")
df.interpolate(method="akima")
When interpolating via a polynomial or spline approximation, you must also specify
the degree or order of the approximation:
.. ipython:: python
df.interpolate(method="spline", order=2)
df.interpolate(method="polynomial", order=2)
Comparing several methods.
.. ipython:: python
np.random.seed(2)
ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37))
missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
ser.iloc[missing] = np.nan
methods = ["linear", "quadratic", "cubic"]
df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
@savefig compare_interpolations.png
df.plot()
Interpolating new observations from expanding data with :meth:`Series.reindex`.
.. ipython:: python
ser = pd.Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]))
interp_s = ser.reindex(new_index).interpolate(method="pchip")
interp_s.loc[49:51]
.. _scipy: https://scipy.org/
.. _documentation: https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
.. _guide: https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
.. _missing_data.interp_limits:
Interpolation limits
^^^^^^^^^^^^^^^^^^^^
:meth:`~DataFrame.interpolate` accepts a ``limit`` keyword
argument to limit the number of consecutive ``NaN`` values
filled since the last valid observation
.. ipython:: python
ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan])
ser
ser.interpolate()
ser.interpolate(limit=1)
By default, ``NaN`` values are filled in a ``forward`` direction. Use
``limit_direction`` parameter to fill ``backward`` or from ``both`` directions.
.. ipython:: python
ser.interpolate(limit=1, limit_direction="backward")
ser.interpolate(limit=1, limit_direction="both")
ser.interpolate(limit_direction="both")
By default, ``NaN`` values are filled whether they are surrounded by
existing valid values or outside existing valid values. The ``limit_area``
parameter restricts filling to either inside or outside values.
.. ipython:: python
# fill one consecutive inside value in both directions
ser.interpolate(limit_direction="both", limit_area="inside", limit=1)
# fill all consecutive outside values backward
ser.interpolate(limit_direction="backward", limit_area="outside")
# fill all consecutive outside values in both directions
ser.interpolate(limit_direction="both", limit_area="outside")
.. _missing_data.replace:
Replacing values
----------------
:meth:`Series.replace` and :meth:`DataFrame.replace` can be used similar to
:meth:`Series.fillna` and :meth:`DataFrame.fillna` to replace or insert missing values.
.. ipython:: python
df = pd.DataFrame(np.eye(3))
df
df_missing = df.replace(0, np.nan)
df_missing
df_filled = df_missing.replace(np.nan, 2)
df_filled
Replacing more than one value is possible by passing a list.
.. ipython:: python
df_filled.replace([1, 44], [2, 28])
Replacing using a mapping dict.
.. ipython:: python
df_filled.replace({1: 44, 2: 28})
.. _missing_data.replace_expression:
Regular expression replacement
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
Python strings prefixed with the ``r`` character such as ``r'hello world'``
are `"raw" strings <https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals>`_.
They have different semantics regarding backslashes than strings without this prefix.
Backslashes in raw strings will be interpreted as an escaped backslash, e.g., ``r'\' == '\\'``.
Replace the '.' with ``NaN``
.. ipython:: python
d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
df = pd.DataFrame(d)
df.replace(".", np.nan)
Replace the '.' with ``NaN`` with regular expression that removes surrounding whitespace
.. ipython:: python
df.replace(r"\s*\.\s*", np.nan, regex=True)
Replace with a list of regexes.
.. ipython:: python
df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True)
Replace with a regex in a mapping dict.
.. ipython:: python
df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)
Pass nested dictionaries of regular expressions that use the ``regex`` keyword.
.. ipython:: python
df.replace({"b": {"b": r""}}, regex=True)
df.replace(regex={"b": {r"\s*\.\s*": np.nan}})
df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)
Pass a list of regular expressions that will replace matches with a scalar.
.. ipython:: python
df.replace([r"\s*\.\s*", r"a|b"], "placeholder", regex=True)
All of the regular expression examples can also be passed with the
``to_replace`` argument as the ``regex`` argument. In this case the ``value``
argument must be passed explicitly by name or ``regex`` must be a nested
dictionary.
.. ipython:: python
df.replace(regex=[r"\s*\.\s*", r"a|b"], value="placeholder")
.. note::
A regular expression object from ``re.compile`` is a valid input as well.