-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_tseries.py
532 lines (400 loc) · 17.1 KB
/
test_tseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import unittest
from numpy import nan
import numpy as np
from pandas import Index, isnull
from pandas.util.testing import assert_almost_equal
import pandas.util.testing as common
import pandas._tseries as lib
import pandas._algos as algos
from datetime import datetime
class TestTseriesUtil(unittest.TestCase):
def test_combineFunc(self):
pass
def test_reindex(self):
pass
def test_isnull(self):
pass
def test_groupby(self):
pass
def test_groupby_withnull(self):
pass
def test_backfill(self):
old = Index([1, 5, 10])
new = Index(range(12))
filler = algos.backfill_int64(old, new)
expect_filler = [0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1]
self.assert_(np.array_equal(filler, expect_filler))
# corner case
old = Index([1, 4])
new = Index(range(5, 10))
filler = algos.backfill_int64(old, new)
expect_filler = [-1, -1, -1, -1, -1]
self.assert_(np.array_equal(filler, expect_filler))
def test_pad(self):
old = Index([1, 5, 10])
new = Index(range(12))
filler = algos.pad_int64(old, new)
expect_filler = [-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2]
self.assert_(np.array_equal(filler, expect_filler))
# corner case
old = Index([5, 10])
new = Index(range(5))
filler = algos.pad_int64(old, new)
expect_filler = [-1, -1, -1, -1, -1]
self.assert_(np.array_equal(filler, expect_filler))
def test_left_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([2, 2, 3, 4, 4], dtype=np.int64)
result = algos.left_join_indexer_int64(b, a)
expected = np.array([1, 1, 2, 3, 3], dtype=np.int64)
assert(np.array_equal(result, expected))
def test_left_outer_join_bug():
left = np.array([0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3,
2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1,
3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0,
3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3,
2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0,
3, 1, 2, 0, 2], dtype=np.int64)
right = np.array([3, 1], dtype=np.int64)
max_groups = 4
lidx, ridx = lib.left_outer_join(left, right, max_groups, sort=False)
exp_lidx = np.arange(len(left))
exp_ridx = -np.ones(len(left))
exp_ridx[left == 1] = 1
exp_ridx[left == 3] = 0
assert(np.array_equal(lidx, exp_lidx))
assert(np.array_equal(ridx, exp_ridx))
def test_inner_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([0, 3, 5, 7, 9], dtype=np.int64)
index, ares, bres = algos.inner_join_indexer_int64(a, b)
index_exp = np.array([3, 5], dtype=np.int64)
assert_almost_equal(index, index_exp)
aexp = np.array([2, 4])
bexp = np.array([1, 2])
assert_almost_equal(ares, aexp)
assert_almost_equal(bres, bexp)
def test_outer_join_indexer():
a = np.array([1, 2, 3, 4, 5], dtype=np.int64)
b = np.array([0, 3, 5, 7, 9], dtype=np.int64)
index, ares, bres = algos.outer_join_indexer_int64(a, b)
index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64)
assert_almost_equal(index, index_exp)
aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64)
bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4])
assert_almost_equal(ares, aexp)
assert_almost_equal(bres, bexp)
def test_is_lexsorted():
failure = [
np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3,
3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
15, 14,
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28,
27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11,
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25,
24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22,
21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
4, 3, 2, 1, 0])]
assert(not lib.is_lexsorted(failure))
# def test_get_group_index():
# a = np.array([0, 1, 2, 0, 2, 1, 0, 0], dtype=np.int64)
# b = np.array([1, 0, 3, 2, 0, 2, 3, 0], dtype=np.int64)
# expected = np.array([1, 4, 11, 2, 8, 6, 3, 0], dtype=np.int64)
# result = lib.get_group_index([a, b], (3, 4))
# assert(np.array_equal(result, expected))
def test_groupsort_indexer():
a = np.random.randint(0, 1000, 100).astype(np.int64)
b = np.random.randint(0, 1000, 100).astype(np.int64)
result = lib.groupsort_indexer(a, 1000)[0]
# need to use a stable sort
expected = np.argsort(a, kind='mergesort')
assert(np.array_equal(result, expected))
# compare with lexsort
key = a * 1000 + b
result = lib.groupsort_indexer(key, 1000000)[0]
expected = np.lexsort((b, a))
assert(np.array_equal(result, expected))
def test_duplicated_with_nas():
keys = np.array([0, 1, nan, 0, 2, nan], dtype=object)
result = lib.duplicated(keys)
expected = [False, False, False, True, False, True]
assert(np.array_equal(result, expected))
result = lib.duplicated(keys, take_last=True)
expected = [True, False, True, False, False, False]
assert(np.array_equal(result, expected))
keys = np.empty(8, dtype=object)
for i, t in enumerate(zip([0, 0, nan, nan]*2, [0, nan, 0, nan]*2)):
keys[i] = t
result = lib.duplicated(keys)
falses = [False] * 4
trues = [True] * 4
expected = falses + trues
assert(np.array_equal(result, expected))
result = lib.duplicated(keys, take_last=True)
expected = trues + falses
assert(np.array_equal(result, expected))
def test_maybe_booleans_to_slice():
arr = np.array([0, 0, 1, 1, 1, 0, 1], dtype=np.uint8)
result = lib.maybe_booleans_to_slice(arr)
assert(result.dtype == np.bool_)
def test_convert_objects():
arr = np.array(['a', 'b', nan, nan, 'd', 'e', 'f'], dtype='O')
result = lib.maybe_convert_objects(arr)
assert(result.dtype == np.object_)
def test_convert_objects_ints():
# test that we can detect many kinds of integers
dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']
for dtype_str in dtypes:
arr = np.array(list(np.arange(20, dtype=dtype_str)), dtype='O')
assert(arr[0].dtype == np.dtype(dtype_str))
result = lib.maybe_convert_objects(arr)
assert(issubclass(result.dtype.type, np.integer))
def test_rank():
from pandas.compat.scipy import rankdata
def _check(arr):
mask = -np.isfinite(arr)
arr = arr.copy()
result = lib.rank_1d_float64(arr)
arr[mask] = np.inf
exp = rankdata(arr)
exp[mask] = nan
assert_almost_equal(result, exp)
_check(np.array([nan, nan, 5., 5., 5., nan, 1, 2, 3, nan]))
_check(np.array([4., nan, 5., 5., 5., nan, 1, 2, 4., nan]))
def test_get_reverse_indexer():
indexer = np.array([-1, -1, 1, 2, 0, -1, 3, 4], dtype=np.int64)
result = lib.get_reverse_indexer(indexer, 5)
expected = np.array([4, 2, 3, 6, 7], dtype=np.int64)
assert(np.array_equal(result, expected))
def test_pad_backfill_object_segfault():
from datetime import datetime
old = np.array([], dtype='O')
new = np.array([datetime(2010, 12, 31)], dtype='O')
result = algos.pad_object(old, new)
expected = np.array([-1], dtype=np.int64)
assert(np.array_equal(result, expected))
result = algos.pad_object(new, old)
expected = np.array([], dtype=np.int64)
assert(np.array_equal(result, expected))
result = algos.backfill_object(old, new)
expected = np.array([-1], dtype=np.int64)
assert(np.array_equal(result, expected))
result = algos.backfill_object(new, old)
expected = np.array([], dtype=np.int64)
assert(np.array_equal(result, expected))
def test_arrmap():
values = np.array(['foo', 'foo', 'bar', 'bar', 'baz', 'qux'], dtype='O')
result = algos.arrmap_object(values, lambda x: x in ['foo', 'bar'])
assert(result.dtype == np.bool_)
def test_series_grouper():
from pandas import Series
obj = Series(np.random.randn(10))
dummy = obj[:0]
labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64)
grouper = lib.SeriesGrouper(obj, np.mean, labels, 2, dummy)
result, counts = grouper.get_result()
expected = np.array([obj[3:6].mean(), obj[6:].mean()])
assert_almost_equal(result, expected)
exp_counts = np.array([3, 4], dtype=np.int64)
assert_almost_equal(counts, exp_counts)
def test_series_bin_grouper():
from pandas import Series
obj = Series(np.random.randn(10))
dummy = obj[:0]
bins = np.array([3, 6])
grouper = lib.SeriesBinGrouper(obj, np.mean, bins, dummy)
result, counts = grouper.get_result()
expected = np.array([obj[:3].mean(), obj[3:6].mean(), obj[6:].mean()])
assert_almost_equal(result, expected)
exp_counts = np.array([3, 3, 4], dtype=np.int64)
assert_almost_equal(counts, exp_counts)
def test_generate_bins():
from pandas.core.groupby import generate_bins_generic
values = np.array([1,2,3,4,5,6], dtype=np.int64)
binner = np.array([0,3,6,9], dtype=np.int64)
for func in [lib.generate_bins_dt64, generate_bins_generic]:
bins = func(values, binner, closed='left')
assert((bins == np.array([2, 5, 6])).all())
bins = func(values, binner, closed='right')
assert((bins == np.array([3, 6, 6])).all())
for func in [lib.generate_bins_dt64, generate_bins_generic]:
values = np.array([1,2,3,4,5,6], dtype=np.int64)
binner = np.array([0,3,6], dtype=np.int64)
bins = func(values, binner, closed='right')
assert((bins == np.array([3, 6])).all())
class TestBinGroupers(unittest.TestCase):
def setUp(self):
self.obj = np.random.randn(10, 1)
self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64)
self.bins = np.array([3, 6], dtype=np.int64)
def test_group_bin_functions(self):
funcs = ['add', 'mean', 'prod', 'min', 'max', 'var']
np_funcs = {
'add': np.sum,
'mean': np.mean,
'prod': np.prod,
'min': np.min,
'max': np.max,
'var': lambda x: x.var(ddof=1) if len(x) >=2 else np.nan
}
for fname in funcs:
args = [getattr(lib, 'group_%s' % fname),
getattr(lib, 'group_%s_bin' % fname),
np_funcs[fname]]
self._check_versions(*args)
def _check_versions(self, irr_func, bin_func, np_func):
obj = self.obj
cts = np.zeros(3, dtype=np.int64)
exp = np.zeros((3, 1), np.float64)
irr_func(exp, cts, obj, self.labels)
# bin-based version
bins = np.array([3, 6], dtype=np.int64)
out = np.zeros((3, 1), np.float64)
counts = np.zeros(len(out), dtype=np.int64)
bin_func(out, counts, obj, bins)
assert_almost_equal(out, exp)
bins = np.array([3, 9, 10], dtype=np.int64)
out = np.zeros((3, 1), np.float64)
counts = np.zeros(len(out), dtype=np.int64)
bin_func(out, counts, obj, bins)
exp = np.array([np_func(obj[:3]), np_func(obj[3:9]),
np_func(obj[9:])],
dtype=np.float64)
assert_almost_equal(out.squeeze(), exp)
# duplicate bins
bins = np.array([3, 6, 10, 10], dtype=np.int64)
out = np.zeros((4, 1), np.float64)
counts = np.zeros(len(out), dtype=np.int64)
bin_func(out, counts, obj, bins)
exp = np.array([np_func(obj[:3]), np_func(obj[3:6]),
np_func(obj[6:10]), np.nan],
dtype=np.float64)
assert_almost_equal(out.squeeze(), exp)
def test_group_ohlc():
obj = np.random.randn(20)
bins = np.array([6, 12], dtype=np.int64)
out = np.zeros((3, 4), np.float64)
counts = np.zeros(len(out), dtype=np.int64)
lib.group_ohlc(out, counts, obj[:, None], bins)
def _ohlc(group):
if isnull(group).all():
return np.repeat(nan, 4)
return [group[0], group.max(), group.min(), group[-1]]
expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]),
_ohlc(obj[12:])])
assert_almost_equal(out, expected)
assert_almost_equal(counts, [6, 6, 8])
obj[:6] = nan
lib.group_ohlc(out, counts, obj[:, None], bins)
expected[0] = nan
assert_almost_equal(out, expected)
def test_try_parse_dates():
from dateutil.parser import parse
arr = np.array(['5/1/2000', '6/1/2000', '7/1/2000'], dtype=object)
result = lib.try_parse_dates(arr, dayfirst=True)
expected = [parse(d, dayfirst=True) for d in arr]
assert(np.array_equal(result, expected))
class TestTypeInference(unittest.TestCase):
def test_length_zero(self):
result = lib.infer_dtype(np.array([], dtype='i4'))
self.assertEqual(result, 'empty')
result = lib.infer_dtype(np.array([], dtype='O'))
self.assertEqual(result, 'empty')
def test_integers(self):
arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'integer')
arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'],
dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'mixed-integer')
arr = np.array([1, 2, 3, 4, 5], dtype='i4')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'integer')
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'boolean')
arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'boolean')
arr = np.array([True, False, True, 'foo'], dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'mixed')
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr)
self.assertEqual(result, 'boolean')
def test_floats(self):
arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'floating')
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
dtype='O')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'mixed-integer')
arr = np.array([1, 2, 3, 4, 5], dtype='f4')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'floating')
arr = np.array([1, 2, 3, 4, 5], dtype='f8')
result = lib.infer_dtype(arr)
self.assertEqual(result, 'floating')
def test_string(self):
pass
def test_unicode(self):
pass
def test_datetime(self):
import datetime
dates = [datetime.datetime(2012, 1, x) for x in range(1, 20)]
index = Index(dates)
self.assert_(index.inferred_type == 'datetime64')
def test_date(self):
import datetime
dates = [datetime.date(2012, 1, x) for x in range(1, 20)]
index = Index(dates)
self.assert_(index.inferred_type == 'date')
def test_to_object_array_tuples(self):
r = (5,6)
values = [r]
result = lib.to_object_array_tuples(values)
try:
# make sure record array works
from collections import namedtuple
record = namedtuple('record', 'x y')
r = record(5, 6)
values = [r]
result = lib.to_object_array_tuples(values)
except ImportError:
pass
class TestMoments(unittest.TestCase):
pass
class TestReducer(unittest.TestCase):
def test_int_index(self):
from pandas.core.series import Series
arr = np.random.randn(100, 4)
result = lib.reduce(arr, np.sum, labels=np.arange(4))
expected = arr.sum(0)
assert_almost_equal(result, expected)
result = lib.reduce(arr, np.sum, axis=1, labels=np.arange(100))
expected = arr.sum(1)
assert_almost_equal(result, expected)
dummy = Series(0., index=np.arange(100))
result = lib.reduce(arr, np.sum, dummy=dummy, labels=np.arange(4))
expected = arr.sum(0)
assert_almost_equal(result, expected)
dummy = Series(0., index=np.arange(4))
result = lib.reduce(arr, np.sum, axis=1,
dummy=dummy, labels=np.arange(100))
expected = arr.sum(1)
assert_almost_equal(result, expected)
if __name__ == '__main__':
import nose
nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'],
exit=False)