-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_empty.py
274 lines (229 loc) · 9.16 KB
/
test_empty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, Series, concat, date_range
import pandas._testing as tm
class TestEmptyConcat:
def test_handle_empty_objects(self, sort):
df = DataFrame(np.random.randn(10, 4), columns=list("abcd"))
baz = df[:5].copy()
baz["foo"] = "bar"
empty = df[5:5]
frames = [baz, empty, empty, df[5:]]
concatted = concat(frames, axis=0, sort=sort)
expected = df.reindex(columns=["a", "b", "c", "d", "foo"])
expected["foo"] = expected["foo"].astype("O")
expected.loc[0:4, "foo"] = "bar"
tm.assert_frame_equal(concatted, expected)
# empty as first element with time series
# GH3259
df = DataFrame(
{"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s")
)
empty = DataFrame()
result = concat([df, empty], axis=1)
tm.assert_frame_equal(result, df)
result = concat([empty, df], axis=1)
tm.assert_frame_equal(result, df)
result = concat([df, empty])
tm.assert_frame_equal(result, df)
result = concat([empty, df])
tm.assert_frame_equal(result, df)
def test_concat_empty_series(self):
# GH 11082
s1 = Series([1, 2, 3], name="x")
s2 = Series(name="y", dtype="float64")
res = pd.concat([s1, s2], axis=1)
exp = DataFrame(
{"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]},
index=Index([0, 1, 2], dtype="O"),
)
tm.assert_frame_equal(res, exp)
s1 = Series([1, 2, 3], name="x")
s2 = Series(name="y", dtype="float64")
res = pd.concat([s1, s2], axis=0)
# name will be reset
exp = Series([1, 2, 3])
tm.assert_series_equal(res, exp)
# empty Series with no name
s1 = Series([1, 2, 3], name="x")
s2 = Series(name=None, dtype="float64")
res = pd.concat([s1, s2], axis=1)
exp = DataFrame(
{"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]},
columns=["x", 0],
index=Index([0, 1, 2], dtype="O"),
)
tm.assert_frame_equal(res, exp)
@pytest.mark.parametrize("tz", [None, "UTC"])
@pytest.mark.parametrize("values", [[], [1, 2, 3]])
def test_concat_empty_series_timelike(self, tz, values):
# GH 18447
first = Series([], dtype="M8[ns]").dt.tz_localize(tz)
dtype = None if values else np.float64
second = Series(values, dtype=dtype)
expected = DataFrame(
{
0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz),
1: values,
}
)
result = concat([first, second], axis=1)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"left,right,expected",
[
# booleans
(np.bool_, np.int32, np.int32),
(np.bool_, np.float32, np.object_),
# datetime-like
("m8[ns]", np.bool_, np.object_),
("m8[ns]", np.int64, np.object_),
("M8[ns]", np.bool_, np.object_),
("M8[ns]", np.int64, np.object_),
# categorical
("category", "category", "category"),
("category", "object", "object"),
],
)
def test_concat_empty_series_dtypes(self, left, right, expected):
result = pd.concat([Series(dtype=left), Series(dtype=right)])
assert result.dtype == expected
@pytest.mark.parametrize(
"dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]
)
def test_concat_empty_series_dtypes_match_roundtrips(self, dtype):
dtype = np.dtype(dtype)
result = pd.concat([Series(dtype=dtype)])
assert result.dtype == dtype
result = pd.concat([Series(dtype=dtype), Series(dtype=dtype)])
assert result.dtype == dtype
def test_concat_empty_series_dtypes_roundtrips(self):
# round-tripping with self & like self
dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"])
def int_result_type(dtype, dtype2):
typs = {dtype.kind, dtype2.kind}
if not len(typs - {"i", "u", "b"}) and (
dtype.kind == "i" or dtype2.kind == "i"
):
return "i"
elif not len(typs - {"u", "b"}) and (
dtype.kind == "u" or dtype2.kind == "u"
):
return "u"
return None
def float_result_type(dtype, dtype2):
typs = {dtype.kind, dtype2.kind}
if not len(typs - {"f", "i", "u"}) and (
dtype.kind == "f" or dtype2.kind == "f"
):
return "f"
return None
def get_result_type(dtype, dtype2):
result = float_result_type(dtype, dtype2)
if result is not None:
return result
result = int_result_type(dtype, dtype2)
if result is not None:
return result
return "O"
for dtype in dtypes:
for dtype2 in dtypes:
if dtype == dtype2:
continue
expected = get_result_type(dtype, dtype2)
result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype
assert result.kind == expected
def test_concat_empty_series_dtypes_triple(self):
assert (
pd.concat(
[Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)]
).dtype
== np.object_
)
def test_concat_empty_series_dtype_category_with_array(self):
# GH#18515
assert (
pd.concat(
[Series(np.array([]), dtype="category"), Series(dtype="float64")]
).dtype
== "float64"
)
def test_concat_empty_series_dtypes_sparse(self):
result = pd.concat(
[
Series(dtype="float64").astype("Sparse"),
Series(dtype="float64").astype("Sparse"),
]
)
assert result.dtype == "Sparse[float64]"
result = pd.concat(
[Series(dtype="float64").astype("Sparse"), Series(dtype="float64")]
)
# TODO: release-note: concat sparse dtype
expected = pd.SparseDtype(np.float64)
assert result.dtype == expected
result = pd.concat(
[Series(dtype="float64").astype("Sparse"), Series(dtype="object")]
)
# TODO: release-note: concat sparse dtype
expected = pd.SparseDtype("object")
assert result.dtype == expected
def test_concat_empty_df_object_dtype(self):
# GH 9149
df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]})
df_2 = DataFrame(columns=df_1.columns)
result = pd.concat([df_1, df_2], axis=0)
expected = df_1.astype(object)
tm.assert_frame_equal(result, expected)
def test_concat_empty_dataframe_dtypes(self):
df = DataFrame(columns=list("abc"))
df["a"] = df["a"].astype(np.bool_)
df["b"] = df["b"].astype(np.int32)
df["c"] = df["c"].astype(np.float64)
result = pd.concat([df, df])
assert result["a"].dtype == np.bool_
assert result["b"].dtype == np.int32
assert result["c"].dtype == np.float64
result = pd.concat([df, df.astype(np.float64)])
assert result["a"].dtype == np.object_
assert result["b"].dtype == np.float64
assert result["c"].dtype == np.float64
def test_concat_inner_join_empty(self):
# GH 15328
df_empty = DataFrame()
df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64")
df_expected = DataFrame({"a": []}, index=[], dtype="int64")
for how, expected in [("inner", df_expected), ("outer", df_a)]:
result = pd.concat([df_a, df_empty], axis=1, join=how)
tm.assert_frame_equal(result, expected)
def test_empty_dtype_coerce(self):
# xref to #12411
# xref to #12045
# xref to #11594
# see below
# 10571
df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"])
df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"])
result = concat([df1, df2])
expected = df1.dtypes
tm.assert_series_equal(result.dtypes, expected)
def test_concat_empty_dataframe(self):
# 39037
df1 = DataFrame(columns=["a", "b"])
df2 = DataFrame(columns=["b", "c"])
result = concat([df1, df2, df1])
expected = DataFrame(columns=["a", "b", "c"])
tm.assert_frame_equal(result, expected)
df3 = DataFrame(columns=["a", "b"])
df4 = DataFrame(columns=["b"])
result = concat([df3, df4])
expected = DataFrame(columns=["a", "b"])
tm.assert_frame_equal(result, expected)
def test_concat_empty_dataframe_different_dtypes(self):
# 39037
df1 = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
df2 = DataFrame({"a": [1, 2, 3]})
result = concat([df1[:0], df2[:0]])
assert result["a"].dtype == np.int64
assert result["b"].dtype == np.object_