-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathgroupby_helper.pxi.in
793 lines (648 loc) · 24.2 KB
/
groupby_helper.pxi.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
"""
Template for each `dtype` helper function using groupby
WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""
cdef extern from "numpy/npy_math.h":
double NAN "NPY_NAN"
_int64_max = np.iinfo(np.int64).max
#----------------------------------------------------------------------
# group_add, group_prod, group_var, group_mean, group_ohlc
#----------------------------------------------------------------------
{{py:
# name, c_type, dest_type, dest_dtype
dtypes = [('float64', 'float64_t', 'float64_t', 'np.float64'),
('float32', 'float32_t', 'float32_t', 'np.float32')]
def get_dispatch(dtypes):
for name, c_type, dest_type, dest_dtype in dtypes:
dest_type2 = dest_type
dest_type = dest_type.replace('_t', '')
yield name, c_type, dest_type, dest_type2, dest_dtype
}}
{{for name, c_type, dest_type, dest_type2, dest_dtype in get_dispatch(dtypes)}}
@cython.wraparound(False)
@cython.boundscheck(False)
def group_add_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{c_type}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=0):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, count
ndarray[{{dest_type2}}, ndim=2] sumx, nobs
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
sumx = np.zeros_like(out)
N, K = (<object> values).shape
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, j] += 1
sumx[lab, j] += val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] < min_count:
out[i, j] = NAN
else:
out[i, j] = sumx[i, j]
@cython.wraparound(False)
@cython.boundscheck(False)
def group_prod_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{c_type}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=0):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, count
ndarray[{{dest_type2}}, ndim=2] prodx, nobs
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
prodx = np.ones_like(out)
N, K = (<object> values).shape
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, j] += 1
prodx[lab, j] *= val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] < min_count:
out[i, j] = NAN
else:
out[i, j] = prodx[i, j]
@cython.wraparound(False)
@cython.boundscheck(False)
@cython.cdivision(True)
def group_var_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, ct, oldmean
ndarray[{{dest_type2}}, ndim=2] nobs, mean
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
mean = np.zeros_like(out)
N, K = (<object> values).shape
out[:, :] = 0.0
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, j] += 1
oldmean = mean[lab, j]
mean[lab, j] += (val - oldmean) / nobs[lab, j]
out[lab, j] += (val - mean[lab, j]) * (val - oldmean)
for i in range(ncounts):
for j in range(K):
ct = nobs[i, j]
if ct < 2:
out[i, j] = NAN
else:
out[i, j] /= (ct - 1)
# add passing bin edges, instead of labels
@cython.wraparound(False)
@cython.boundscheck(False)
def group_mean_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, count
ndarray[{{dest_type2}}, ndim=2] sumx, nobs
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
sumx = np.zeros_like(out)
N, K = (<object> values).shape
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, j] += 1
sumx[lab, j] += val
for i in range(ncounts):
for j in range(K):
count = nobs[i, j]
if nobs[i, j] == 0:
out[i, j] = NAN
else:
out[i, j] = sumx[i, j] / count
@cython.wraparound(False)
@cython.boundscheck(False)
def group_ohlc_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab
{{dest_type2}} val, count
Py_ssize_t ngroups = len(counts)
assert min_count == -1, "'min_count' only used in add and prod"
if len(labels) == 0:
return
N, K = (<object> values).shape
if out.shape[1] != 4:
raise ValueError('Output array must have 4 columns')
if K > 1:
raise NotImplementedError("Argument 'values' must have only "
"one dimension")
out.fill(np.nan)
with nogil:
for i in range(N):
lab = labels[i]
if lab == -1:
continue
counts[lab] += 1
val = values[i, 0]
if val != val:
continue
if out[lab, 0] != out[lab, 0]:
out[lab, 0] = out[lab, 1] = out[lab, 2] = out[lab, 3] = val
else:
out[lab, 1] = max(out[lab, 1], val)
out[lab, 2] = min(out[lab, 2], val)
out[lab, 3] = val
{{endfor}}
#----------------------------------------------------------------------
# group_nth, group_last, group_rank
#----------------------------------------------------------------------
{{py:
# name, c_type, dest_type2, nan_val
dtypes = [('float64', 'float64_t', 'float64_t', 'NAN'),
('float32', 'float32_t', 'float32_t', 'NAN'),
('int64', 'int64_t', 'int64_t', 'iNaT'),
('object', 'object', 'object', 'NAN')]
def get_dispatch(dtypes):
for name, c_type, dest_type2, nan_val in dtypes:
yield name, c_type, dest_type2, nan_val
}}
{{for name, c_type, dest_type2, nan_val in get_dispatch(dtypes)}}
@cython.wraparound(False)
@cython.boundscheck(False)
def group_last_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{c_type}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val
ndarray[{{dest_type2}}, ndim=2] resx
ndarray[int64_t, ndim=2] nobs
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros((<object> out).shape, dtype=np.int64)
{{if name=='object'}}
resx = np.empty((<object> out).shape, dtype=object)
{{else}}
resx = np.empty_like(out)
{{endif}}
N, K = (<object> values).shape
{{if name == "object"}}
if True: # make templating happy
{{else}}
with nogil:
{{endif}}
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val and val != {{nan_val}}:
nobs[lab, j] += 1
resx[lab, j] = val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] == 0:
out[i, j] = {{nan_val}}
else:
out[i, j] = resx[i, j]
@cython.wraparound(False)
@cython.boundscheck(False)
def group_nth_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{c_type}}, ndim=2] values,
ndarray[int64_t] labels, int64_t rank,
Py_ssize_t min_count=-1):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val
ndarray[{{dest_type2}}, ndim=2] resx
ndarray[int64_t, ndim=2] nobs
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros((<object> out).shape, dtype=np.int64)
{{if name=='object'}}
resx = np.empty((<object> out).shape, dtype=object)
{{else}}
resx = np.empty_like(out)
{{endif}}
N, K = (<object> values).shape
{{if name == "object"}}
if True: # make templating happy
{{else}}
with nogil:
{{endif}}
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val and val != {{nan_val}}:
nobs[lab, j] += 1
if nobs[lab, j] == rank:
resx[lab, j] = val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] == 0:
out[i, j] = {{nan_val}}
else:
out[i, j] = resx[i, j]
{{if name != 'object'}}
@cython.boundscheck(False)
@cython.wraparound(False)
def group_rank_{{name}}(ndarray[float64_t, ndim=2] out,
ndarray[{{c_type}}, ndim=2] values,
ndarray[int64_t] labels,
bint is_datetimelike, object ties_method,
bint ascending, bint pct, object na_option):
"""Provides the rank of values within each group
Parameters
----------
out : array of float64_t values which this method will write its results to
values : array of {{c_type}} values to be ranked
labels : array containing unique label for each group, with its ordering
matching up to the corresponding record in `values`
is_datetimelike : bool
unused in this method but provided for call compatibility with other
Cython transformations
ties_method : {'keep', 'top', 'bottom'}
* keep: leave NA values where they are
* top: smallest rank if ascending
* bottom: smallest rank if descending
ascending : boolean
False for ranks by high (1) to low (N)
pct : boolean
Compute percentage rank of data within each group
Notes
-----
This method modifies the `out` parameter rather than returning an object
"""
cdef:
TiebreakEnumType tiebreak
Py_ssize_t i, j, N, K, val_start=0, grp_start=0, dups=0, sum_ranks=0
Py_ssize_t grp_vals_seen=1, grp_na_count=0
ndarray[int64_t] _as
ndarray[float64_t, ndim=2] grp_sizes
ndarray[{{c_type}}] masked_vals
ndarray[uint8_t] mask
bint keep_na
{{c_type}} nan_fill_val
tiebreak = tiebreakers[ties_method]
keep_na = na_option == 'keep'
N, K = (<object> values).shape
grp_sizes = np.ones_like(out)
# Copy values into new array in order to fill missing data
# with mask, without obfuscating location of missing data
# in values array
masked_vals = np.array(values[:, 0], copy=True)
{{if name=='int64'}}
mask = (masked_vals == {{nan_val}}).astype(np.uint8)
{{else}}
mask = np.isnan(masked_vals).astype(np.uint8)
{{endif}}
if ascending ^ (na_option == 'top'):
{{if name == 'int64'}}
nan_fill_val = np.iinfo(np.int64).max
{{else}}
nan_fill_val = np.inf
{{endif}}
order = (masked_vals, mask, labels)
else:
{{if name == 'int64'}}
nan_fill_val = np.iinfo(np.int64).min
{{else}}
nan_fill_val = -np.inf
{{endif}}
order = (masked_vals, ~mask, labels)
np.putmask(masked_vals, mask, nan_fill_val)
# lexsort using labels, then mask, then actual values
# each label corresponds to a different group value,
# the mask helps you differentiate missing values before
# performing sort on the actual values
_as = np.lexsort(order).astype(np.int64, copy=False)
if not ascending:
_as = _as[::-1]
with nogil:
# Loop over the length of the value array
# each incremental i value can be looked up in the _as array
# that we sorted previously, which gives us the location of
# that sorted value for retrieval back from the original
# values / masked_vals arrays
for i in range(N):
# dups and sum_ranks will be incremented each loop where
# the value / group remains the same, and should be reset
# when either of those change
# Used to calculate tiebreakers
dups += 1
sum_ranks += i - grp_start + 1
# if keep_na, check for missing values and assign back
# to the result where appropriate
if keep_na and masked_vals[_as[i]] == nan_fill_val:
grp_na_count += 1
out[_as[i], 0] = nan
else:
# this implementation is inefficient because it will
# continue overwriting previously encountered dups
# i.e. if 5 duplicated values are encountered it will
# write to the result as follows (assumes avg tiebreaker):
# 1
# .5 .5
# .33 .33 .33
# .25 .25 .25 .25
# .2 .2 .2 .2 .2
#
# could potentially be optimized to only write to the
# result once the last duplicate value is encountered
if tiebreak == TIEBREAK_AVERAGE:
for j in range(i - dups + 1, i + 1):
out[_as[j], 0] = sum_ranks / <float64_t>dups
elif tiebreak == TIEBREAK_MIN:
for j in range(i - dups + 1, i + 1):
out[_as[j], 0] = i - grp_start - dups + 2
elif tiebreak == TIEBREAK_MAX:
for j in range(i - dups + 1, i + 1):
out[_as[j], 0] = i - grp_start + 1
elif tiebreak == TIEBREAK_FIRST:
for j in range(i - dups + 1, i + 1):
if ascending:
out[_as[j], 0] = j + 1 - grp_start
else:
out[_as[j], 0] = 2 * i - j - dups + 2 - grp_start
elif tiebreak == TIEBREAK_DENSE:
for j in range(i - dups + 1, i + 1):
out[_as[j], 0] = grp_vals_seen
# look forward to the next value (using the sorting in _as)
# if the value does not equal the current value then we need to
# reset the dups and sum_ranks, knowing that a new value is coming
# up. the conditional also needs to handle nan equality and the
# end of iteration
if (i == N - 1 or (
(masked_vals[_as[i]] != masked_vals[_as[i+1]]) and not
(mask[_as[i]] and mask[_as[i+1]]))):
dups = sum_ranks = 0
val_start = i
grp_vals_seen += 1
# Similar to the previous conditional, check now if we are moving
# to a new group. If so, keep track of the index where the new
# group occurs, so the tiebreaker calculations can decrement that
# from their position. fill in the size of each group encountered
# (used by pct calculations later). also be sure to reset any of
# the items helping to calculate dups
if i == N - 1 or labels[_as[i]] != labels[_as[i+1]]:
for j in range(grp_start, i + 1):
grp_sizes[_as[j], 0] = i - grp_start + 1 - grp_na_count
dups = sum_ranks = 0
grp_na_count = 0
val_start = i + 1
grp_start = i + 1
grp_vals_seen = 1
if pct:
for i in range(N):
out[i, 0] = out[i, 0] / grp_sizes[i, 0]
{{endif}}
{{endfor}}
#----------------------------------------------------------------------
# group_min, group_max
#----------------------------------------------------------------------
{{py:
# name, c_type, dest_type2, nan_val
dtypes = [('float64', 'float64_t', 'NAN', 'np.inf'),
('float32', 'float32_t', 'NAN', 'np.inf'),
('int64', 'int64_t', 'iNaT', '_int64_max')]
def get_dispatch(dtypes):
for name, dest_type2, nan_val, inf_val in dtypes:
yield name, dest_type2, nan_val, inf_val
}}
{{for name, dest_type2, nan_val, inf_val in get_dispatch(dtypes)}}
@cython.wraparound(False)
@cython.boundscheck(False)
def group_max_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, count
ndarray[{{dest_type2}}, ndim=2] maxx, nobs
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
maxx = np.empty_like(out)
maxx.fill(-{{inf_val}})
N, K = (<object> values).shape
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if val > maxx[lab, j]:
maxx[lab, j] = val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] == 0:
out[i, j] = {{nan_val}}
else:
out[i, j] = maxx[i, j]
@cython.wraparound(False)
@cython.boundscheck(False)
def group_min_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[int64_t] counts,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
Py_ssize_t min_count=-1):
"""
Only aggregates on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, lab, ncounts = len(counts)
{{dest_type2}} val, count
ndarray[{{dest_type2}}, ndim=2] minx, nobs
assert min_count == -1, "'min_count' only used in add and prod"
if not len(values) == len(labels):
raise AssertionError("len(index) != len(labels)")
nobs = np.zeros_like(out)
minx = np.empty_like(out)
minx.fill({{inf_val}})
N, K = (<object> values).shape
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if val < minx[lab, j]:
minx[lab, j] = val
for i in range(ncounts):
for j in range(K):
if nobs[i, j] == 0:
out[i, j] = {{nan_val}}
else:
out[i, j] = minx[i, j]
@cython.boundscheck(False)
@cython.wraparound(False)
def group_cummin_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
bint is_datetimelike):
"""
Only transforms on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, size
{{dest_type2}} val, mval
ndarray[{{dest_type2}}, ndim=2] accum
int64_t lab
N, K = (<object> values).shape
accum = np.empty_like(values)
accum.fill({{inf_val}})
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for j in range(K):
val = values[i, j]
# val = nan
{{if name == 'int64'}}
if is_datetimelike and val == {{nan_val}}:
out[i, j] = {{nan_val}}
else:
{{else}}
if val == val:
{{endif}}
mval = accum[lab, j]
if val < mval:
accum[lab, j] = mval = val
out[i, j] = mval
@cython.boundscheck(False)
@cython.wraparound(False)
def group_cummax_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
ndarray[{{dest_type2}}, ndim=2] values,
ndarray[int64_t] labels,
bint is_datetimelike):
"""
Only transforms on axis=0
"""
cdef:
Py_ssize_t i, j, N, K, size
{{dest_type2}} val, mval
ndarray[{{dest_type2}}, ndim=2] accum
int64_t lab
N, K = (<object> values).shape
accum = np.empty_like(values)
accum.fill(-{{inf_val}})
with nogil:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for j in range(K):
val = values[i, j]
{{if name == 'int64'}}
if is_datetimelike and val == {{nan_val}}:
out[i, j] = {{nan_val}}
else:
{{else}}
if val == val:
{{endif}}
mval = accum[lab, j]
if val > mval:
accum[lab, j] = mval = val
out[i, j] = mval
{{endfor}}