-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathresample.py
443 lines (354 loc) · 14.9 KB
/
resample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from datetime import timedelta
import numpy as np
from pandas.core.groupby import BinGrouper, Grouper
from pandas.tseries.frequencies import to_offset, is_subperiod, is_superperiod
from pandas.tseries.index import DatetimeIndex, date_range
from pandas.tseries.offsets import DateOffset, Tick, _delta_to_nanoseconds
from pandas.tseries.period import PeriodIndex, period_range
import pandas.tseries.tools as tools
import pandas.core.common as com
import pandas.compat as compat
from pandas.lib import Timestamp
import pandas.lib as lib
_DEFAULT_METHOD = 'mean'
class TimeGrouper(Grouper):
"""
Custom groupby class for time-interval grouping
Parameters
----------
freq : pandas date offset or offset alias for identifying bin edges
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
nperiods : optional, integer
convention : {'start', 'end', 'e', 's'}
If axis is PeriodIndex
Notes
-----
Use begin, end, nperiods to generate intervals that cannot be derived
directly from the associated object
"""
def __init__(self, freq='Min', closed=None, label=None, how='mean',
nperiods=None, axis=0,
fill_method=None, limit=None, loffset=None, kind=None,
convention=None, base=0, **kwargs):
freq = to_offset(freq)
end_types = set(['M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W'])
rule = freq.rule_code
if (rule in end_types or
('-' in rule and rule[:rule.find('-')] in end_types)):
if closed is None:
closed = 'right'
if label is None:
label = 'right'
else:
if closed is None:
closed = 'left'
if label is None:
label = 'left'
self.closed = closed
self.label = label
self.nperiods = nperiods
self.kind = kind
self.convention = convention or 'E'
self.convention = self.convention.lower()
self.loffset = loffset
self.how = how
self.fill_method = fill_method
self.limit = limit
self.base = base
# always sort time groupers
kwargs['sort'] = True
super(TimeGrouper, self).__init__(freq=freq, axis=axis, **kwargs)
def resample(self, obj):
self._set_grouper(obj, sort=True)
ax = self.grouper
if isinstance(ax, DatetimeIndex):
rs = self._resample_timestamps()
elif isinstance(ax, PeriodIndex):
offset = to_offset(self.freq)
if offset.n > 1:
if self.kind == 'period': # pragma: no cover
print('Warning: multiple of frequency -> timestamps')
# Cannot have multiple of periods, convert to timestamp
self.kind = 'timestamp'
if self.kind is None or self.kind == 'period':
rs = self._resample_periods()
else:
obj = self.obj.to_timestamp(how=self.convention)
self._set_grouper(obj)
rs = self._resample_timestamps()
elif len(ax) == 0:
return self.obj
else: # pragma: no cover
raise TypeError('Only valid with DatetimeIndex or PeriodIndex')
rs_axis = rs._get_axis(self.axis)
rs_axis.name = ax.name
return rs
def _get_grouper(self, obj):
self._set_grouper(obj)
return self._get_binner_for_resample()
def _get_binner_for_resample(self):
# create the BinGrouper
# assume that self.set_grouper(obj) has already been called
ax = self.ax
if self.kind is None or self.kind == 'timestamp':
self.binner, bins, binlabels = self._get_time_bins(ax)
else:
self.binner, bins, binlabels = self._get_time_period_bins(ax)
self.grouper = BinGrouper(bins, binlabels)
return self.binner, self.grouper, self.obj
def _get_binner_for_grouping(self, obj):
# return an ordering of the transformed group labels,
# suitable for multi-grouping, e.g the labels for
# the resampled intervals
ax = self._set_grouper(obj)
self._get_binner_for_resample()
# create the grouper
binner = self.binner
l = []
for key, group in self.grouper.get_iterator(ax):
l.extend([key]*len(group))
grouper = binner.__class__(l,freq=binner.freq,name=binner.name)
# since we may have had to sort
# may need to reorder groups here
if self.indexer is not None:
indexer = self.indexer.argsort(kind='quicksort')
grouper = grouper.take(indexer)
return grouper
def _get_time_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if len(ax) == 0:
binner = labels = DatetimeIndex(data=[], freq=self.freq, name=ax.name)
return binner, [], labels
first, last = _get_range_edges(ax, self.freq, closed=self.closed,
base=self.base)
tz = ax.tz
binner = labels = DatetimeIndex(freq=self.freq,
start=first.replace(tzinfo=None),
end=last.replace(tzinfo=None),
tz=tz,
name=ax.name)
# a little hack
trimmed = False
if (len(binner) > 2 and binner[-2] == ax.max() and
self.closed == 'right'):
binner = binner[:-1]
trimmed = True
ax_values = ax.asi8
binner, bin_edges = self._adjust_bin_edges(binner, ax_values)
# general version, knowing nothing about relative frequencies
bins = lib.generate_bins_dt64(ax_values, bin_edges, self.closed)
if self.closed == 'right':
labels = binner
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
else:
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
# if we end up with more labels than bins
# adjust the labels
# GH4076
if len(bins) < len(labels):
labels = labels[:len(bins)]
return binner, bins, labels
def _adjust_bin_edges(self, binner, ax_values):
# Some hacks for > daily data, see #1471, #1458, #1483
bin_edges = binner.asi8
if self.freq != 'D' and is_superperiod(self.freq, 'D'):
day_nanos = _delta_to_nanoseconds(timedelta(1))
if self.closed == 'right':
bin_edges = bin_edges + day_nanos - 1
# intraday values on last day
if bin_edges[-2] > ax_values.max():
bin_edges = bin_edges[:-1]
binner = binner[:-1]
return binner, bin_edges
def _get_time_period_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if not len(ax):
binner = labels = PeriodIndex(data=[], freq=self.freq, name=ax.name)
return binner, [], labels
labels = binner = PeriodIndex(start=ax[0],
end=ax[-1],
freq=self.freq,
name=ax.name)
end_stamps = (labels + 1).asfreq(self.freq, 's').to_timestamp()
if ax.tzinfo:
end_stamps = end_stamps.tz_localize(ax.tzinfo)
bins = ax.searchsorted(end_stamps, side='left')
return binner, bins, labels
@property
def _agg_method(self):
return self.how if self.how else _DEFAULT_METHOD
def _resample_timestamps(self):
# assumes set_grouper(obj) already called
axlabels = self.ax
self._get_binner_for_resample()
grouper = self.grouper
binner = self.binner
obj = self.obj
# Determine if we're downsampling
if axlabels.freq is not None or axlabels.inferred_freq is not None:
if len(grouper.binlabels) < len(axlabels) or self.how is not None:
# downsample
grouped = obj.groupby(grouper, axis=self.axis)
result = grouped.aggregate(self._agg_method)
# GH2073
if self.fill_method is not None:
result = result.fillna(method=self.fill_method,
limit=self.limit)
else:
# upsampling shortcut
if self.axis:
raise AssertionError('axis must be 0')
if self.closed == 'right':
res_index = binner[1:]
else:
res_index = binner[:-1]
# if we have the same frequency as our axis, then we are equal sampling
# even if how is None
if self.fill_method is None and self.limit is None and to_offset(
axlabels.inferred_freq) == self.freq:
result = obj.copy()
result.index = res_index
else:
result = obj.reindex(res_index, method=self.fill_method,
limit=self.limit)
else:
# Irregular data, have to use groupby
grouped = obj.groupby(grouper, axis=self.axis)
result = grouped.aggregate(self._agg_method)
if self.fill_method is not None:
result = result.fillna(method=self.fill_method,
limit=self.limit)
loffset = self.loffset
if isinstance(loffset, compat.string_types):
loffset = to_offset(self.loffset)
if isinstance(loffset, (DateOffset, timedelta)):
if (isinstance(result.index, DatetimeIndex)
and len(result.index) > 0):
result.index = result.index + loffset
return result
def _resample_periods(self):
# assumes set_grouper(obj) already called
axlabels = self.ax
obj = self.obj
if len(axlabels) == 0:
new_index = PeriodIndex(data=[], freq=self.freq)
return obj.reindex(new_index)
else:
start = axlabels[0].asfreq(self.freq, how=self.convention)
end = axlabels[-1].asfreq(self.freq, how='end')
new_index = period_range(start, end, freq=self.freq)
# Start vs. end of period
memb = axlabels.asfreq(self.freq, how=self.convention)
if is_subperiod(axlabels.freq, self.freq) or self.how is not None:
# Downsampling
rng = np.arange(memb.values[0], memb.values[-1] + 1)
bins = memb.searchsorted(rng, side='right')
grouper = BinGrouper(bins, new_index)
grouped = obj.groupby(grouper, axis=self.axis)
return grouped.aggregate(self._agg_method)
elif is_superperiod(axlabels.freq, self.freq):
# Get the fill indexer
indexer = memb.get_indexer(new_index, method=self.fill_method,
limit=self.limit)
return _take_new_index(obj, indexer, new_index, axis=self.axis)
else:
raise ValueError('Frequency %s cannot be resampled to %s'
% (axlabels.freq, self.freq))
def _take_new_index(obj, indexer, new_index, axis=0):
from pandas.core.api import Series, DataFrame
if isinstance(obj, Series):
new_values = com.take_1d(obj.values, indexer)
return Series(new_values, index=new_index, name=obj.name)
elif isinstance(obj, DataFrame):
if axis == 1:
raise NotImplementedError
return DataFrame(obj._data.reindex_indexer(
new_axis=new_index, indexer=indexer, axis=1))
else:
raise NotImplementedError
def _get_range_edges(axis, offset, closed='left', base=0):
if isinstance(offset, compat.string_types):
offset = to_offset(offset)
if isinstance(offset, Tick):
day_nanos = _delta_to_nanoseconds(timedelta(1))
# #1165
if (day_nanos % offset.nanos) == 0:
return _adjust_dates_anchored(axis[0], axis[-1], offset,
closed=closed, base=base)
first, last = axis.min(), axis.max()
if not isinstance(offset, Tick): # and first.time() != last.time():
# hack!
first = tools.normalize_date(first)
last = tools.normalize_date(last)
if closed == 'left':
first = Timestamp(offset.rollback(first))
else:
first = Timestamp(first - offset)
last = Timestamp(last + offset)
return first, last
def _adjust_dates_anchored(first, last, offset, closed='right', base=0):
from pandas.tseries.tools import normalize_date
start_day_nanos = Timestamp(normalize_date(first)).value
last_day_nanos = Timestamp(normalize_date(last)).value
base_nanos = (base % offset.n) * offset.nanos // offset.n
start_day_nanos += base_nanos
last_day_nanos += base_nanos
foffset = (first.value - start_day_nanos) % offset.nanos
loffset = (last.value - last_day_nanos) % offset.nanos
if closed == 'right':
if foffset > 0:
# roll back
fresult = first.value - foffset
else:
fresult = first.value - offset.nanos
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
# already the end of the road
lresult = last.value
else: # closed == 'left'
if foffset > 0:
fresult = first.value - foffset
else:
# start of the road
fresult = first.value
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
lresult = last.value + offset.nanos
return (Timestamp(fresult, tz=first.tz),
Timestamp(lresult, tz=last.tz))
def asfreq(obj, freq, method=None, how=None, normalize=False):
"""
Utility frequency conversion method for Series/DataFrame
"""
if isinstance(obj.index, PeriodIndex):
if method is not None:
raise NotImplementedError
if how is None:
how = 'E'
new_index = obj.index.asfreq(freq, how=how)
new_obj = obj.copy()
new_obj.index = new_index
return new_obj
else:
if len(obj.index) == 0:
return obj.copy()
dti = date_range(obj.index[0], obj.index[-1], freq=freq)
rs = obj.reindex(dti, method=method)
if normalize:
rs.index = rs.index.normalize()
return rs