-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathmelt.py
461 lines (394 loc) · 15.5 KB
/
melt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# pylint: disable=E1101,E1103
# pylint: disable=W0703,W0622,W0613,W0201
import re
import numpy as np
from pandas.util._decorators import Appender
from pandas.core.dtypes.common import is_extension_type, is_list_like
from pandas.core.dtypes.generic import ABCMultiIndex
from pandas.core.dtypes.missing import notna
from pandas import compat
from pandas.core.arrays import Categorical
from pandas.core.frame import _shared_docs
from pandas.core.indexes.base import Index
from pandas.core.reshape.concat import concat
from pandas.core.tools.numeric import to_numeric
@Appender(_shared_docs['melt'] %
dict(caller='pd.melt(df, ',
versionadded="",
other='DataFrame.melt'))
def melt(frame, id_vars=None, value_vars=None, var_name=None,
value_name='value', col_level=None):
# TODO: what about the existing index?
# If multiindex, gather names of columns on all level for checking presence
# of `id_vars` and `value_vars`
if isinstance(frame.columns, ABCMultiIndex):
cols = [x for c in frame.columns for x in c]
else:
cols = list(frame.columns)
if id_vars is not None:
if not is_list_like(id_vars):
id_vars = [id_vars]
elif (isinstance(frame.columns, ABCMultiIndex) and
not isinstance(id_vars, list)):
raise ValueError('id_vars must be a list of tuples when columns'
' are a MultiIndex')
else:
# Check that `id_vars` are in frame
id_vars = list(id_vars)
missing = Index(np.ravel(id_vars)).difference(cols)
if not missing.empty:
raise KeyError("The following 'id_vars' are not present"
" in the DataFrame: {missing}"
"".format(missing=list(missing)))
else:
id_vars = []
if value_vars is not None:
if not is_list_like(value_vars):
value_vars = [value_vars]
elif (isinstance(frame.columns, ABCMultiIndex) and
not isinstance(value_vars, list)):
raise ValueError('value_vars must be a list of tuples when'
' columns are a MultiIndex')
else:
value_vars = list(value_vars)
# Check that `value_vars` are in frame
missing = Index(np.ravel(value_vars)).difference(cols)
if not missing.empty:
raise KeyError("The following 'value_vars' are not present in"
" the DataFrame: {missing}"
"".format(missing=list(missing)))
frame = frame.loc[:, id_vars + value_vars]
else:
frame = frame.copy()
if col_level is not None: # allow list or other?
# frame is a copy
frame.columns = frame.columns.get_level_values(col_level)
if var_name is None:
if isinstance(frame.columns, ABCMultiIndex):
if len(frame.columns.names) == len(set(frame.columns.names)):
var_name = frame.columns.names
else:
var_name = ['variable_{i}'.format(i=i)
for i in range(len(frame.columns.names))]
else:
var_name = [frame.columns.name if frame.columns.name is not None
else 'variable']
if isinstance(var_name, compat.string_types):
var_name = [var_name]
N, K = frame.shape
K -= len(id_vars)
mdata = {}
for col in id_vars:
id_data = frame.pop(col)
if is_extension_type(id_data):
id_data = concat([id_data] * K, ignore_index=True)
else:
id_data = np.tile(id_data.values, K)
mdata[col] = id_data
mcolumns = id_vars + var_name + [value_name]
mdata[value_name] = frame.values.ravel('F')
for i, col in enumerate(var_name):
# asanyarray will keep the columns as an Index
mdata[col] = np.asanyarray(frame.columns
._get_level_values(i)).repeat(N)
return frame._constructor(mdata, columns=mcolumns)
def lreshape(data, groups, dropna=True, label=None):
"""
Reshape long-format data to wide. Generalized inverse of DataFrame.pivot
Parameters
----------
data : DataFrame
groups : dict
{new_name : list_of_columns}
dropna : boolean, default True
Examples
--------
>>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
... 'team': ['Red Sox', 'Yankees'],
... 'year1': [2007, 2007], 'year2': [2008, 2008]})
>>> data
hr1 hr2 team year1 year2
0 514 545 Red Sox 2007 2008
1 573 526 Yankees 2007 2008
>>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
team year hr
0 Red Sox 2007 514
1 Yankees 2007 573
2 Red Sox 2008 545
3 Yankees 2008 526
Returns
-------
reshaped : DataFrame
"""
if isinstance(groups, dict):
keys = list(groups.keys())
values = list(groups.values())
else:
keys, values = zip(*groups)
all_cols = list(set.union(*[set(x) for x in values]))
id_cols = list(data.columns.difference(all_cols))
K = len(values[0])
for seq in values:
if len(seq) != K:
raise ValueError('All column lists must be same length')
mdata = {}
pivot_cols = []
for target, names in zip(keys, values):
to_concat = [data[col].values for col in names]
import pandas.core.dtypes.concat as _concat
mdata[target] = _concat._concat_compat(to_concat)
pivot_cols.append(target)
for col in id_cols:
mdata[col] = np.tile(data[col].values, K)
if dropna:
mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool)
for c in pivot_cols:
mask &= notna(mdata[c])
if not mask.all():
mdata = {k: v[mask] for k, v in compat.iteritems(mdata)}
return data._constructor(mdata, columns=id_cols + pivot_cols)
def wide_to_long(df, stubnames, i, j, sep="", suffix=r'\d+'):
r"""
Wide panel to long format. Less flexible but more user-friendly than melt.
With stubnames ['A', 'B'], this function expects to find one or more
group of columns with format
A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,...
You specify what you want to call this suffix in the resulting long format
with `j` (for example `j='year'`)
Each row of these wide variables are assumed to be uniquely identified by
`i` (can be a single column name or a list of column names)
All remaining variables in the data frame are left intact.
Parameters
----------
df : DataFrame
The wide-format DataFrame
stubnames : str or list-like
The stub name(s). The wide format variables are assumed to
start with the stub names.
i : str or list-like
Column(s) to use as id variable(s)
j : str
The name of the sub-observation variable. What you wish to name your
suffix in the long format.
sep : str, default ""
A character indicating the separation of the variable names
in the wide format, to be stripped from the names in the long format.
For example, if your column names are A-suffix1, A-suffix2, you
can strip the hyphen by specifying `sep='-'`
.. versionadded:: 0.20.0
suffix : str, default '\\d+'
A regular expression capturing the wanted suffixes. '\\d+' captures
numeric suffixes. Suffixes with no numbers could be specified with the
negated character class '\\D+'. You can also further disambiguate
suffixes, for example, if your wide variables are of the form
A-one, B-two,.., and you have an unrelated column A-rating, you can
ignore the last one by specifying `suffix='(!?one|two)'`
.. versionadded:: 0.20.0
.. versionchanged:: 0.23.0
When all suffixes are numeric, they are cast to int64/float64.
Returns
-------
DataFrame
A DataFrame that contains each stub name as a variable, with new index
(i, j).
Notes
-----
All extra variables are left untouched. This simply uses
`pandas.melt` under the hood, but is hard-coded to "do the right thing"
in a typical case.
Examples
--------
>>> np.random.seed(123)
>>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
... "A1980" : {0 : "d", 1 : "e", 2 : "f"},
... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
... "X" : dict(zip(range(3), np.random.randn(3)))
... })
>>> df["id"] = df.index
>>> df
A1970 A1980 B1970 B1980 X id
0 a d 2.5 3.2 -1.085631 0
1 b e 1.2 1.3 0.997345 1
2 c f 0.7 0.1 0.282978 2
>>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
... # doctest: +NORMALIZE_WHITESPACE
X A B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
2 1970 0.282978 c 0.7
0 1980 -1.085631 d 3.2
1 1980 0.997345 e 1.3
2 1980 0.282978 f 0.1
With multiple id columns
>>> df = pd.DataFrame({
... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df
birth famid ht1 ht2
0 1 1 2.8 3.4
1 2 1 2.9 3.8
2 3 1 2.2 2.9
3 1 2 2.0 3.2
4 2 2 1.8 2.8
5 3 2 1.9 2.4
6 1 3 2.2 3.3
7 2 3 2.3 3.4
8 3 3 2.1 2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
>>> l
... # doctest: +NORMALIZE_WHITESPACE
ht
famid birth age
1 1 1 2.8
2 3.4
2 1 2.9
2 3.8
3 1 2.2
2 2.9
2 1 1 2.0
2 3.2
2 1 1.8
2 2.8
3 1 1.9
2 2.4
3 1 1 2.2
2 3.3
2 1 2.3
2 3.4
3 1 2.1
2 2.9
Going from long back to wide just takes some creative use of `unstack`
>>> w = l.unstack()
>>> w.columns = w.columns.map('{0[0]}{0[1]}'.format)
>>> w.reset_index()
famid birth ht1 ht2
0 1 1 2.8 3.4
1 1 2 2.9 3.8
2 1 3 2.2 2.9
3 2 1 2.0 3.2
4 2 2 1.8 2.8
5 2 3 1.9 2.4
6 3 1 2.2 3.3
7 3 2 2.3 3.4
8 3 3 2.1 2.9
Less wieldy column names are also handled
>>> np.random.seed(0)
>>> df = pd.DataFrame({'A(quarterly)-2010': np.random.rand(3),
... 'A(quarterly)-2011': np.random.rand(3),
... 'B(quarterly)-2010': np.random.rand(3),
... 'B(quarterly)-2011': np.random.rand(3),
... 'X' : np.random.randint(3, size=3)})
>>> df['id'] = df.index
>>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS
A(quarterly)-2010 A(quarterly)-2011 B(quarterly)-2010 ...
0 0.548814 0.544883 0.437587 ...
1 0.715189 0.423655 0.891773 ...
2 0.602763 0.645894 0.963663 ...
X id
0 0 0
1 1 1
2 1 2
>>> pd.wide_to_long(df, ['A(quarterly)', 'B(quarterly)'], i='id',
... j='year', sep='-')
... # doctest: +NORMALIZE_WHITESPACE
X A(quarterly) B(quarterly)
id year
0 2010 0 0.548814 0.437587
1 2010 1 0.715189 0.891773
2 2010 1 0.602763 0.963663
0 2011 0 0.544883 0.383442
1 2011 1 0.423655 0.791725
2 2011 1 0.645894 0.528895
If we have many columns, we could also use a regex to find our
stubnames and pass that list on to wide_to_long
>>> stubnames = sorted(
... set([match[0] for match in df.columns.str.findall(
... r'[A-B]\(.*\)').values if match != [] ])
... )
>>> list(stubnames)
['A(quarterly)', 'B(quarterly)']
All of the above examples have integers as suffixes. It is possible to
have non-integers as suffixes.
>>> df = pd.DataFrame({
... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
... })
>>> df
birth famid ht_one ht_two
0 1 1 2.8 3.4
1 2 1 2.9 3.8
2 3 1 2.2 2.9
3 1 2 2.0 3.2
4 2 2 1.8 2.8
5 3 2 1.9 2.4
6 1 3 2.2 3.3
7 2 3 2.3 3.4
8 3 3 2.1 2.9
>>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age',
... sep='_', suffix='\w+')
>>> l
... # doctest: +NORMALIZE_WHITESPACE
ht
famid birth age
1 1 one 2.8
two 3.4
2 one 2.9
two 3.8
3 one 2.2
two 2.9
2 1 one 2.0
two 3.2
2 one 1.8
two 2.8
3 one 1.9
two 2.4
3 1 one 2.2
two 3.3
2 one 2.3
two 3.4
3 one 2.1
two 2.9
"""
def get_var_names(df, stub, sep, suffix):
regex = r'^{stub}{sep}{suffix}$'.format(
stub=re.escape(stub), sep=re.escape(sep), suffix=suffix)
pattern = re.compile(regex)
return [col for col in df.columns if pattern.match(col)]
def melt_stub(df, stub, i, j, value_vars, sep):
newdf = melt(df, id_vars=i, value_vars=value_vars,
value_name=stub.rstrip(sep), var_name=j)
newdf[j] = Categorical(newdf[j])
newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "")
# GH17627 Cast numerics suffixes to int/float
newdf[j] = to_numeric(newdf[j], errors='ignore')
return newdf.set_index(i + [j])
if not is_list_like(stubnames):
stubnames = [stubnames]
else:
stubnames = list(stubnames)
if any(col in stubnames for col in df.columns):
raise ValueError("stubname can't be identical to a column name")
if not is_list_like(i):
i = [i]
else:
i = list(i)
if df[i].duplicated().any():
raise ValueError("the id variables need to uniquely identify each row")
value_vars = [get_var_names(df, stub, sep, suffix) for stub in stubnames]
value_vars_flattened = [e for sublist in value_vars for e in sublist]
id_vars = list(set(df.columns.tolist()).difference(value_vars_flattened))
melted = [melt_stub(df, s, i, j, v, sep)
for s, v in zip(stubnames, value_vars)]
melted = melted[0].join(melted[1:], how='outer')
if len(i) == 1:
new = df[id_vars].set_index(i).join(melted)
return new
new = df[id_vars].merge(melted.reset_index(), on=i).set_index(i + [j])
return new