-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_sorting.py
462 lines (369 loc) · 17.6 KB
/
test_sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from collections import defaultdict
from datetime import datetime
from itertools import product
import numpy as np
import pytest
from pandas import DataFrame, MultiIndex, Series, array, concat, merge
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
import pandas.core.common as com
from pandas.core.sorting import (
decons_group_index,
get_group_index,
is_int64_overflow_possible,
lexsort_indexer,
nargsort,
)
class TestSorting:
@pytest.mark.slow
def test_int64_overflow(self):
B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
A = np.arange(2500)
df = DataFrame(
{
"A": A,
"B": B,
"C": A,
"D": B,
"E": A,
"F": B,
"G": A,
"H": B,
"values": np.random.randn(2500),
}
)
lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"])
rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"])
left = lg.sum()["values"]
right = rg.sum()["values"]
exp_index, _ = left.index.sortlevel()
tm.assert_index_equal(left.index, exp_index)
exp_index, _ = right.index.sortlevel(0)
tm.assert_index_equal(right.index, exp_index)
tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values))
tups = com.asarray_tuplesafe(tups)
expected = df.groupby(tups).sum()["values"]
for k, v in expected.items():
assert left[k] == right[k[::-1]]
assert left[k] == v
assert len(left) == len(right)
@pytest.mark.arm_slow
def test_int64_overflow_moar(self):
# GH9096
values = range(55109)
data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values})
grouped = data.groupby(["a", "b", "c", "d"])
assert len(grouped) == len(values)
arr = np.random.randint(-1 << 12, 1 << 12, (1 << 15, 5))
i = np.random.choice(len(arr), len(arr) * 4)
arr = np.vstack((arr, arr[i])) # add sume duplicate rows
i = np.random.permutation(len(arr))
arr = arr[i] # shuffle rows
df = DataFrame(arr, columns=list("abcde"))
df["jim"], df["joe"] = np.random.randn(2, len(df)) * 10
gr = df.groupby(list("abcde"))
# verify this is testing what it is supposed to test!
assert is_int64_overflow_possible(gr.grouper.shape)
# manually compute groupings
jim, joe = defaultdict(list), defaultdict(list)
for key, a, b in zip(map(tuple, arr), df["jim"], df["joe"]):
jim[key].append(a)
joe[key].append(b)
assert len(gr) == len(jim)
mi = MultiIndex.from_tuples(jim.keys(), names=list("abcde"))
def aggr(func):
f = lambda a: np.fromiter(map(func, a), dtype="f8")
arr = np.vstack((f(jim.values()), f(joe.values()))).T
res = DataFrame(arr, columns=["jim", "joe"], index=mi)
return res.sort_index()
tm.assert_frame_equal(gr.mean(), aggr(np.mean))
tm.assert_frame_equal(gr.median(), aggr(np.median))
def test_lexsort_indexer(self):
keys = [[np.nan] * 5 + list(range(100)) + [np.nan] * 5]
# orders=True, na_position='last'
result = lexsort_indexer(keys, orders=True, na_position="last")
exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
# orders=True, na_position='first'
result = lexsort_indexer(keys, orders=True, na_position="first")
exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
# orders=False, na_position='last'
result = lexsort_indexer(keys, orders=False, na_position="last")
exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
# orders=False, na_position='first'
result = lexsort_indexer(keys, orders=False, na_position="first")
exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
def test_nargsort(self):
# np.argsort(items) places NaNs last
items = [np.nan] * 5 + list(range(100)) + [np.nan] * 5
# np.argsort(items2) may not place NaNs first
items2 = np.array(items, dtype="O")
# mergesort is the most difficult to get right because we want it to be
# stable.
# According to numpy/core/tests/test_multiarray, """The number of
# sorted items must be greater than ~50 to check the actual algorithm
# because quick and merge sort fall over to insertion sort for small
# arrays."""
# mergesort, ascending=True, na_position='last'
result = nargsort(items, kind="mergesort", ascending=True, na_position="last")
exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=True, na_position='first'
result = nargsort(items, kind="mergesort", ascending=True, na_position="first")
exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=False, na_position='last'
result = nargsort(items, kind="mergesort", ascending=False, na_position="last")
exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=False, na_position='first'
result = nargsort(items, kind="mergesort", ascending=False, na_position="first")
exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=True, na_position='last'
result = nargsort(items2, kind="mergesort", ascending=True, na_position="last")
exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=True, na_position='first'
result = nargsort(items2, kind="mergesort", ascending=True, na_position="first")
exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=False, na_position='last'
result = nargsort(items2, kind="mergesort", ascending=False, na_position="last")
exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
# mergesort, ascending=False, na_position='first'
result = nargsort(
items2, kind="mergesort", ascending=False, na_position="first"
)
exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
class TestMerge:
@pytest.mark.slow
def test_int64_overflow_issues(self):
# #2690, combinatorial explosion
df1 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G1"])
df2 = DataFrame(np.random.randn(1000, 7), columns=list("ABCDEF") + ["G2"])
# it works!
result = merge(df1, df2, how="outer")
assert len(result) == 2000
low, high, n = -1 << 10, 1 << 10, 1 << 20
left = DataFrame(np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG"))
left["left"] = left.sum(axis=1)
# one-2-one match
i = np.random.permutation(len(left))
right = left.iloc[i].copy()
right.columns = right.columns[:-1].tolist() + ["right"]
right.index = np.arange(len(right))
right["right"] *= -1
out = merge(left, right, how="outer")
assert len(out) == len(left)
tm.assert_series_equal(out["left"], -out["right"], check_names=False)
result = out.iloc[:, :-2].sum(axis=1)
tm.assert_series_equal(out["left"], result, check_names=False)
assert result.name is None
out.sort_values(out.columns.tolist(), inplace=True)
out.index = np.arange(len(out))
for how in ["left", "right", "outer", "inner"]:
tm.assert_frame_equal(out, merge(left, right, how=how, sort=True))
# check that left merge w/ sort=False maintains left frame order
out = merge(left, right, how="left", sort=False)
tm.assert_frame_equal(left, out[left.columns.tolist()])
out = merge(right, left, how="left", sort=False)
tm.assert_frame_equal(right, out[right.columns.tolist()])
# one-2-many/none match
n = 1 << 11
left = DataFrame(
np.random.randint(low, high, (n, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# confirm that this is checking what it is supposed to check
shape = left.apply(Series.nunique).values
assert is_int64_overflow_possible(shape)
# add duplicates to left frame
left = concat([left, left], ignore_index=True)
right = DataFrame(
np.random.randint(low, high, (n // 2, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# add duplicates & overlap with left to the right frame
i = np.random.choice(len(left), n)
right = concat([right, right, left.iloc[i]], ignore_index=True)
left["left"] = np.random.randn(len(left))
right["right"] = np.random.randn(len(right))
# shuffle left & right frames
i = np.random.permutation(len(left))
left = left.iloc[i].copy()
left.index = np.arange(len(left))
i = np.random.permutation(len(right))
right = right.iloc[i].copy()
right.index = np.arange(len(right))
# manually compute outer merge
ldict, rdict = defaultdict(list), defaultdict(list)
for idx, row in left.set_index(list("ABCDEFG")).iterrows():
ldict[idx].append(row["left"])
for idx, row in right.set_index(list("ABCDEFG")).iterrows():
rdict[idx].append(row["right"])
vals = []
for k, lval in ldict.items():
rval = rdict.get(k, [np.nan])
for lv, rv in product(lval, rval):
vals.append(k + tuple([lv, rv]))
for k, rval in rdict.items():
if k not in ldict:
for rv in rval:
vals.append(k + tuple([np.nan, rv]))
def align(df):
df = df.sort_values(df.columns.tolist())
df.index = np.arange(len(df))
return df
def verify_order(df):
kcols = list("ABCDEFG")
tm.assert_frame_equal(
df[kcols].copy(), df[kcols].sort_values(kcols, kind="mergesort")
)
out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"])
out = align(out)
jmask = {
"left": out["left"].notna(),
"right": out["right"].notna(),
"inner": out["left"].notna() & out["right"].notna(),
"outer": np.ones(len(out), dtype="bool"),
}
for how in ["left", "right", "outer", "inner"]:
mask = jmask[how]
frame = align(out[mask].copy())
assert mask.all() ^ mask.any() or how == "outer"
for sort in [False, True]:
res = merge(left, right, how=how, sort=sort)
if sort:
verify_order(res)
# as in GH9092 dtypes break with outer/right join
tm.assert_frame_equal(
frame, align(res), check_dtype=how not in ("right", "outer")
)
def test_decons():
def testit(codes_list, shape):
group_index = get_group_index(codes_list, shape, sort=True, xnull=True)
codes_list2 = decons_group_index(group_index, shape)
for a, b in zip(codes_list, codes_list2):
tm.assert_numpy_array_equal(a, b)
shape = (4, 5, 6)
codes_list = [
np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64),
]
testit(codes_list, shape)
shape = (10000, 10000)
codes_list = [
np.tile(np.arange(10000, dtype=np.int64), 5),
np.tile(np.arange(10000, dtype=np.int64), 5),
]
testit(codes_list, shape)
class TestSafeSort:
def test_basic_sort(self):
values = [3, 1, 2, 0, 4]
result = safe_sort(values)
expected = np.array([0, 1, 2, 3, 4])
tm.assert_numpy_array_equal(result, expected)
values = list("baaacb")
result = safe_sort(values)
expected = np.array(list("aaabbc"), dtype="object")
tm.assert_numpy_array_equal(result, expected)
values = []
result = safe_sort(values)
expected = np.array([])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
def test_codes(self, verify):
values = [3, 1, 2, 0, 4]
expected = np.array([0, 1, 2, 3, 4])
codes = [0, 1, 1, 2, 3, 0, -1, 4]
result, result_codes = safe_sort(values, codes, verify=verify)
expected_codes = np.array([3, 1, 1, 2, 0, 3, -1, 4], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
# na_sentinel
codes = [0, 1, 1, 2, 3, 0, 99, 4]
result, result_codes = safe_sort(values, codes, na_sentinel=99, verify=verify)
expected_codes = np.array([3, 1, 1, 2, 0, 3, 99, 4], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
codes = []
result, result_codes = safe_sort(values, codes, verify=verify)
expected_codes = np.array([], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
@pytest.mark.parametrize("na_sentinel", [-1, 99])
def test_codes_out_of_bound(self, na_sentinel):
values = [3, 1, 2, 0, 4]
expected = np.array([0, 1, 2, 3, 4])
# out of bound indices
codes = [0, 101, 102, 2, 3, 0, 99, 4]
result, result_codes = safe_sort(values, codes, na_sentinel=na_sentinel)
expected_codes = np.array(
[3, na_sentinel, na_sentinel, 2, 0, 3, na_sentinel, 4], dtype=np.intp
)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_mixed_integer(self):
values = np.array(["b", 1, 0, "a", 0, "b"], dtype=object)
result = safe_sort(values)
expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
values = np.array(["b", 1, 0, "a"], dtype=object)
codes = [0, 1, 2, 3, 0, -1, 1]
result, result_codes = safe_sort(values, codes)
expected = np.array([0, 1, "a", "b"], dtype=object)
expected_codes = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_mixed_integer_from_list(self):
values = ["b", 1, 0, "a", 0, "b"]
result = safe_sort(values)
expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_unsortable(self):
# GH 13714
arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object)
msg = (
"unorderable types: .* [<>] .*"
"|" # the above case happens for numpy < 1.14
"'[<>]' not supported between instances of .*"
)
with pytest.raises(TypeError, match=msg):
safe_sort(arr)
def test_exceptions(self):
with pytest.raises(TypeError, match="Only list-like objects are allowed"):
safe_sort(values=1)
with pytest.raises(TypeError, match="Only list-like objects or None"):
safe_sort(values=[0, 1, 2], codes=1)
with pytest.raises(ValueError, match="values should be unique"):
safe_sort(values=[0, 1, 2, 1], codes=[0, 1])
def test_extension_array(self):
# a = array([1, 3, np.nan, 2], dtype='Int64')
a = array([1, 3, 2], dtype="Int64")
result = safe_sort(a)
# expected = array([1, 2, 3, np.nan], dtype='Int64')
expected = array([1, 2, 3], dtype="Int64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
@pytest.mark.parametrize("na_sentinel", [-1, 99])
def test_extension_array_codes(self, verify, na_sentinel):
a = array([1, 3, 2], dtype="Int64")
result, codes = safe_sort(
a, [0, 1, na_sentinel, 2], na_sentinel=na_sentinel, verify=verify
)
expected_values = array([1, 2, 3], dtype="Int64")
expected_codes = np.array([0, 2, na_sentinel, 1], dtype=np.intp)
tm.assert_extension_array_equal(result, expected_values)
tm.assert_numpy_array_equal(codes, expected_codes)
def test_mixed_str_nan():
values = np.array(["b", np.nan, "a", "b"], dtype=object)
result = safe_sort(values)
expected = np.array([np.nan, "a", "b", "b"], dtype=object)
tm.assert_numpy_array_equal(result, expected)