-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathseries.py
589 lines (484 loc) · 19.8 KB
/
series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"""
Data structures for sparse float data. Life is made simpler by dealing only
with float64 data
"""
from collections import abc
import warnings
import numpy as np
import pandas._libs.index as libindex
import pandas._libs.sparse as splib
from pandas._libs.sparse import BlockIndex, IntIndex
from pandas.compat.numpy import function as nv
from pandas.util._decorators import Appender, Substitution
from pandas.core.dtypes.common import is_integer, is_scalar
from pandas.core.dtypes.generic import ABCSeries, ABCSparseSeries
from pandas.core.dtypes.missing import isna, notna
from pandas.core import generic
from pandas.core.arrays import SparseArray
from pandas.core.arrays.sparse import SparseAccessor
from pandas.core.index import Index
from pandas.core.internals import SingleBlockManager
import pandas.core.ops as ops
from pandas.core.series import Series
from pandas.core.sparse.scipy_sparse import (
_coo_to_sparse_series, _sparse_series_to_coo)
_shared_doc_kwargs = dict(axes='index', klass='SparseSeries',
axes_single_arg="{0, 'index'}",
optional_labels='', optional_axis='')
depr_msg = """\
SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.
>>> series = pd.Series(pd.SparseArray(...))
See http://pandas.pydata.org/pandas-docs/stable/\
user_guide/sparse.html#migrating for more.
"""
class SparseSeries(Series):
"""Data structure for labeled, sparse floating point data
.. deprecated:: 0.25.0
Use a Series with sparse values instead.
Parameters
----------
data : {array-like, Series, SparseSeries, dict}
.. versionchanged :: 0.23.0
If data is a dict, argument order is maintained for Python 3.6
and later.
kind : {'block', 'integer'}
fill_value : float
Code for missing value. Defaults depends on dtype.
0 for int dtype, False for bool dtype, and NaN for other dtypes
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
_subtyp = 'sparse_series'
def __init__(self, data=None, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, dtype=None, copy=False,
fastpath=False):
warnings.warn(depr_msg, FutureWarning, stacklevel=2)
# TODO: Most of this should be refactored and shared with Series
# 1. BlockManager -> array
# 2. Series.index, Series.name, index, name reconciliation
# 3. Implicit reindexing
# 4. Implicit broadcasting
# 5. Dict construction
if data is None:
data = []
elif isinstance(data, SingleBlockManager):
index = data.index
data = data.blocks[0].values
elif isinstance(data, (ABCSeries, ABCSparseSeries)):
index = data.index if index is None else index
dtype = data.dtype if dtype is None else dtype
name = data.name if name is None else name
if index is not None:
data = data.reindex(index)
elif isinstance(data, abc.Mapping):
data, index = Series()._init_dict(data, index=index)
elif is_scalar(data) and index is not None:
data = np.full(len(index), fill_value=data)
super().__init__(
SparseArray(data,
sparse_index=sparse_index,
kind=kind,
dtype=dtype,
fill_value=fill_value,
copy=copy),
index=index, name=name,
copy=False, fastpath=fastpath
)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
# avoid infinite recursion for other SparseSeries inputs
inputs = tuple(
x.values if isinstance(x, type(self)) else x
for x in inputs
)
result = self.values.__array_ufunc__(ufunc, method, *inputs, **kwargs)
return self._constructor(result, index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False).__finalize__(self)
# unary ops
# TODO: See if this can be shared
def __pos__(self):
result = self.values.__pos__()
return self._constructor(result, index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False).__finalize__(self)
def __neg__(self):
result = self.values.__neg__()
return self._constructor(result, index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False).__finalize__(self)
def __invert__(self):
result = self.values.__invert__()
return self._constructor(result, index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False).__finalize__(self)
@property
def block(self):
warnings.warn("SparseSeries.block is deprecated.", FutureWarning,
stacklevel=2)
return self._data._block
@property
def fill_value(self):
return self.values.fill_value
@fill_value.setter
def fill_value(self, v):
self.values.fill_value = v
@property
def sp_index(self):
return self.values.sp_index
@property
def sp_values(self):
return self.values.sp_values
@property
def npoints(self):
return self.values.npoints
@classmethod
def from_array(cls, arr, index=None, name=None, copy=False,
fill_value=None, fastpath=False):
"""Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
"""
warnings.warn("'from_array' is deprecated and will be removed in a "
"future version. Please use the pd.SparseSeries(..) "
"constructor instead.", FutureWarning, stacklevel=2)
return cls(arr, index=index, name=name, copy=copy,
fill_value=fill_value, fastpath=fastpath)
@property
def _constructor(self):
return SparseSeries
@property
def _constructor_expanddim(self):
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return 'block'
elif isinstance(self.sp_index, IntIndex):
return 'integer'
def as_sparse_array(self, kind=None, fill_value=None, copy=False):
""" return my self as a sparse array, do not copy by default """
if fill_value is None:
fill_value = self.fill_value
if kind is None:
kind = self.kind
return SparseArray(self.values, sparse_index=self.sp_index,
fill_value=fill_value, kind=kind, copy=copy)
def __repr__(self):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Sparse")
series_rep = Series.__repr__(self)
rep = '{series}\n{index!r}'.format(series=series_rep,
index=self.sp_index)
return rep
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
filter_type=None, **kwds):
""" perform a reduction operation """
return op(self.get_values(), skipna=skipna, **kwds)
def __getstate__(self):
# pickling
return dict(_typ=self._typ, _subtyp=self._subtyp, _data=self._data,
fill_value=self.fill_value, name=self.name)
def _unpickle_series_compat(self, state):
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(data, sparse_index=sp_index,
fill_value=fill_value, copy=False)
# recreate
data = SingleBlockManager(data, index, fastpath=True)
generic.NDFrame.__init__(self, data)
self._set_axis(0, index)
self.name = name
def _set_subtyp(self, is_all_dates):
if is_all_dates:
object.__setattr__(self, '_subtyp', 'sparse_time_series')
else:
object.__setattr__(self, '_subtyp', 'sparse_series')
def _ixs(self, i, axis=0):
"""
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
"""
label = self.index[i]
if isinstance(label, Index):
return self.take(i, axis=axis)
else:
return self._get_val_at(i)
def _get_val_at(self, loc):
""" forward to the array """
return self.values._get_val_at(loc)
def __getitem__(self, key):
# TODO: Document difference from Series.__getitem__, deprecate,
# and remove!
if is_integer(key) and key not in self.index:
return self._get_val_at(key)
else:
return super().__getitem__(key)
def _get_values(self, indexer):
try:
return self._constructor(self._data.get_slice(indexer),
fastpath=True).__finalize__(self)
except Exception:
return self[indexer]
def _set_with_engine(self, key, value):
return self._set_value(key, value)
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: same type as caller
"""
return self._constructor(np.abs(self.values),
index=self.index).__finalize__(self)
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
def get_value(self, label, takeable=False):
"""
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(label, takeable=takeable)
def _get_value(self, label, takeable=False):
loc = label if takeable is True else self.index.get_loc(label)
return self._get_val_at(loc)
_get_value.__doc__ = get_value.__doc__
def set_value(self, label, value, takeable=False):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(label, value, takeable=takeable)
def _set_value(self, label, value, takeable=False):
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibly change the index
new_values = values._set_value(label, value, takeable=takeable)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
_set_value.__doc__ = set_value.__doc__
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = libindex.convert_scalar(values, value)
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, self.index)
def to_dense(self):
"""
Convert SparseSeries to a Series.
.. deprecated:: 0.25.0
Returns
-------
s : Series
"""
warnings.warn("SparseSeries.to_dense is deprecated "
"and will be removed in a future version",
FutureWarning, stacklevel=2)
return Series(self.values.to_dense(), index=self.index,
name=self.name)
@property
def density(self):
return self.values.density
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
# TODO: https://github.com/pandas-dev/pandas/issues/22314
# We skip the block manager till that is resolved.
new_data = self.values.copy(deep=deep)
return self._constructor(new_data, sparse_index=self.sp_index,
fill_value=self.fill_value,
index=self.index.copy(),
name=self.name).__finalize__(self)
@Substitution(**_shared_doc_kwargs)
@Appender(generic.NDFrame.reindex.__doc__)
def reindex(self, index=None, method=None, copy=True, limit=None,
**kwargs):
# TODO: remove?
return super().reindex(index=index, method=method, copy=copy,
limit=limit, **kwargs)
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError("new index must be a SparseIndex")
values = self.values
values = values.sp_index.to_int_index().reindex(
values.sp_values.astype('float64'), values.fill_value, new_index)
values = SparseArray(values,
sparse_index=new_index,
fill_value=self.values.fill_value)
return self._constructor(values, index=self.index).__finalize__(self)
def cumsum(self, axis=0, *args, **kwargs):
"""
Cumulative sum of non-NA/null values.
When performing the cumulative summation, any non-NA/null values will
be skipped. The resulting SparseSeries will preserve the locations of
NaN values, but the fill value will be `np.nan` regardless.
Parameters
----------
axis : {0}
Returns
-------
cumsum : SparseSeries
"""
nv.validate_cumsum(args, kwargs)
# Validate axis
if axis is not None:
self._get_axis_number(axis)
new_array = self.values.cumsum()
return self._constructor(
new_array, index=self.index,
sparse_index=new_array.sp_index).__finalize__(self)
# TODO: SparseSeries.isna is Sparse, while Series.isna is dense
@Appender(generic._shared_docs['isna'] % _shared_doc_kwargs)
def isna(self):
arr = SparseArray(isna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=isna(self.fill_value))
return self._constructor(arr, index=self.index).__finalize__(self)
isnull = isna
@Appender(generic._shared_docs['notna'] % _shared_doc_kwargs)
def notna(self):
arr = SparseArray(notna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=notna(self.fill_value))
return self._constructor(arr, index=self.index).__finalize__(self)
notnull = notna
def dropna(self, axis=0, inplace=False, **kwargs):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
# Validate axis
self._get_axis_number(axis or 0)
dense_valid = self.to_dense().dropna()
if inplace:
raise NotImplementedError("Cannot perform inplace dropna"
" operations on a SparseSeries")
if isna(self.fill_value):
return dense_valid
else:
dense_valid = dense_valid[dense_valid != self.fill_value]
return dense_valid.to_sparse(fill_value=self.fill_value)
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
@Appender(SparseAccessor.to_coo.__doc__)
def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False):
A, rows, columns = _sparse_series_to_coo(self, row_levels,
column_levels,
sort_labels=sort_labels)
return A, rows, columns
@classmethod
@Appender(SparseAccessor.from_coo.__doc__)
def from_coo(cls, A, dense_index=False):
return _coo_to_sparse_series(A, dense_index=dense_index)
# overwrite series methods with unaccelerated Sparse-specific versions
ops.add_flex_arithmetic_methods(SparseSeries)
ops.add_special_arithmetic_methods(SparseSeries)