|
33 | 33 | from typing_extensions import assert_type
|
34 | 34 | import xarray as xr
|
35 | 35 |
|
36 |
| -from pandas._typing import ( |
37 |
| - AggFuncTypeBase, |
38 |
| - Scalar, |
39 |
| -) |
| 36 | +from pandas._typing import Scalar |
40 | 37 |
|
41 | 38 | from tests import (
|
42 | 39 | TYPE_CHECKING_INVALID_USAGE,
|
@@ -660,11 +657,12 @@ def test_types_groupby_agg() -> None:
|
660 | 657 | assert_type(df.groupby("col1").agg(["min", "max"]), pd.DataFrame), pd.DataFrame
|
661 | 658 | )
|
662 | 659 | check(assert_type(df.groupby("col1").agg([min, max]), pd.DataFrame), pd.DataFrame)
|
663 |
| - agg_dict1: dict[Hashable, str] = {"col2": "min", "col3": "max", 0: "sum"} |
| 660 | + agg_dict1 = {"col2": "min", "col3": "max", 0: "sum"} |
664 | 661 | check(assert_type(df.groupby("col1").agg(agg_dict1), pd.DataFrame), pd.DataFrame)
|
665 |
| - agg_dict2: dict[Hashable, AggFuncTypeBase] = {"col2": min, "col3": max, 0: min} |
| 662 | + agg_dict2 = {"col2": min, "col3": max, 0: min} |
666 | 663 | check(assert_type(df.groupby("col1").agg(agg_dict2), pd.DataFrame), pd.DataFrame)
|
667 |
| - agg_dict3: dict[Hashable, str | AggFuncTypeBase] = { |
| 664 | + # Here, MyPy infers dict[object, object], so it must be explicitly annotated |
| 665 | + agg_dict3: dict[str | int, str | Callable] = { |
668 | 666 | "col2": min,
|
669 | 667 | "col3": "max",
|
670 | 668 | 0: lambda x: x.min(),
|
|
0 commit comments