Skip to content

Latest commit

 

History

History
352 lines (223 loc) · 8.68 KB

visualization.rst

File metadata and controls

352 lines (223 loc) · 8.68 KB
.. currentmodule:: pandas
.. ipython:: python
   :suppress:

   import numpy as np
   np.random.seed(123456)
   from pandas import *
   import pandas.util.testing as tm
   randn = np.random.randn
   np.set_printoptions(precision=4, suppress=True)
   import matplotlib.pyplot as plt
   plt.close('all')

Plotting with matplotlib

Note

We intend to build more plotting integration with matplotlib as time goes on.

We use the standard convention for referencing the matplotlib API:

.. ipython:: python

   import matplotlib.pyplot as plt

Basic plotting: plot

The plot method on Series and DataFrame is just a simple wrapper around plt.plot:

.. ipython:: python

   ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
   ts = ts.cumsum()

   @savefig series_plot_basic.png width=4.5in
   ts.plot()

If the index consists of dates, it calls gcf().autofmt_xdate() to try to format the x-axis nicely as per above. The method takes a number of arguments for controlling the look of the plot:

.. ipython:: python

   @savefig series_plot_basic2.png width=4.5in
   plt.figure(); ts.plot(style='k--', label='Series'); plt.legend()

On DataFrame, plot is a convenience to plot all of the columns with labels:

.. ipython:: python

   df = DataFrame(randn(1000, 4), index=ts.index,
                  columns=['A', 'B', 'C', 'D'])
   df = df.cumsum()

   @savefig frame_plot_basic.png width=4.5in
   plt.figure(); df.plot(); plt.legend(loc='best')

You may set the legend argument to False to hide the legend, which is shown by default.

.. ipython:: python

   @savefig frame_plot_basic_noleg.png width=4.5in
   df.plot(legend=False)

Some other options are available, like plotting each Series on a different axis:

.. ipython:: python

   @savefig frame_plot_subplots.png width=4.5in
   df.plot(subplots=True, figsize=(8, 8)); plt.legend(loc='best')

You may pass logy to get a log-scale Y axis.

.. ipython:: python

   plt.figure();

   ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
   ts = np.exp(ts.cumsum())

   @savefig series_plot_logy.png width=4.5in
   ts.plot(logy=True)


Targeting different subplots

You can pass an ax argument to Series.plot to plot on a particular axis:

.. ipython:: python

   fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 5))
   df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')
   df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B')
   df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C')

   @savefig series_plot_multi.png width=4.5in
   df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')

Other plotting features

Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

.. ipython:: python

   plt.figure();

   @savefig bar_plot_ex.png width=4.5in
   df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')

Calling a DataFrame's plot method with kind='bar' produces a multiple bar plot:

.. ipython:: python
   :suppress:

   plt.figure();

.. ipython:: python

   df2 = DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

   @savefig bar_plot_multi_ex.png width=5in
   df2.plot(kind='bar');

To produce a stacked bar plot, pass stacked=True:

.. ipython:: python
   :suppress:

   plt.figure();

.. ipython:: python

   @savefig bar_plot_stacked_ex.png width=5in
   df2.plot(kind='bar', stacked=True);

To get horizontal bar plots, pass kind='barh':

.. ipython:: python
   :suppress:

   plt.figure();

.. ipython:: python

   @savefig barh_plot_stacked_ex.png width=5in
   df2.plot(kind='barh', stacked=True);

Histograms

.. ipython:: python

   plt.figure();

   @savefig hist_plot_ex.png width=4.5in
   df['A'].diff().hist()

For a DataFrame, hist plots the histograms of the columns on multiple subplots:

.. ipython:: python

   plt.figure()

   @savefig frame_hist_ex.png width=4.5in
   df.diff().hist(color='k', alpha=0.5, bins=50)

Box-Plotting

DataFrame has a boxplot method which allows you to visualize the distribution of values within each column.

For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

.. ipython:: python

   df = DataFrame(np.random.rand(10,5))
   plt.figure();

   @savefig box_plot_ex.png width=4.5in
   bp = df.boxplot()

You can create a stratified boxplot using the by keyword argument to create groupings. For instance,

.. ipython:: python

   df = DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
   df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])

   plt.figure();

   @savefig box_plot_ex2.png width=4.5in
   bp = df.boxplot(by='X')

You can also pass a subset of columns to plot, as well as group by multiple columns:

.. ipython:: python

   df = DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
   df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
   df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B'])

   plt.figure();

   @savefig box_plot_ex3.png width=4.5in
   bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])

Scatter plot matrix

New in 0.7.3. You can create a scatter plot matrix using the
scatter_matrix method in pandas.tools.plotting:
.. ipython:: python

   from pandas.tools.plotting import scatter_matrix
   df = DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])

   @savefig scatter_matrix_kde.png width=6in
   scatter_matrix(df, alpha=0.2, figsize=(8, 8), diagonal='kde')

New in 0.8.0 You can create density plots using the Series/DataFrame.plot and setting kind='kde':

.. ipython:: python
   :suppress:

   plt.figure();

.. ipython:: python

   ser = Series(np.random.randn(1000))

   @savefig kde_plot.png width=6in
   ser.plot(kind='kde')

Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.

.. ipython:: python

   from pandas import read_csv
   from pandas.tools.plotting import andrews_curves

   data = read_csv('data/iris.data')

   plt.figure()

   @savefig andrews_curves.png width=6in
   andrews_curves(data, 'Name')

Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.

.. ipython:: python

   from pandas.tools.plotting import lag_plot

   plt.figure()

   data = Series(0.1 * np.random.random(1000) +
      0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))

   @savefig lag_plot.png width=6in
   lag_plot(data)

Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.

.. ipython:: python

   from pandas.tools.plotting import autocorrelation_plot

   plt.figure()

   data = Series(0.7 * np.random.random(1000) +
      0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))

   @savefig autocorrelation_plot.png width=6in
   autocorrelation_plot(data)

Probability Plot

Probability plots are used to check if given data follows some probability distribution. With default parameters it plots against normal distribution. The data are plotted against the theoretical distribution in such a way that if the data follow the distribution it should display a straight line.

.. ipython:: python

   from pandas.tools.plotting import probability_plot

   plt.figure()

   u_data = Series(np.random.random(1000))
   n_data = Series(np.random.randn(1000))

   @savefig probability_plot_u.png width=6in
   probability_plot(u_data, dist='norm', marker='+', color='black')

   plt.figure()

   @savefig probability_plot_n.png width=6in
   probability_plot(n_data, dist='norm', marker='+', color='black')