Skip to content

Commit ac0e787

Browse files
shaloorgommers
authored andcommitted
Content update for visualization tab and array computing page
Reference: gh-43, which outlines the new website page structure
1 parent 8486aa5 commit ac0e787

15 files changed

+101
-5
lines changed

.DS_Store

-6 KB
Binary file not shown.

content/en/arraycomputing.md

+34-1
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,37 @@ title: Array Computing
33
sidebar: false
44
---
55

6-
TODO
6+
*Array computing is the foundation of statistical, mathematical, scientific computing
7+
in various contemporary data science and analytics applications such as data
8+
visualization, digital signal processing, image processing, bioinformatics,
9+
machine learning, AI and several others.*
10+
11+
Large scale data manipulation and transformation depends on efficient,
12+
high-performance array computing. The language of choice for data analytics,
13+
machine learning and productive numerical computing is **Python.**
14+
15+
**Num**erical **Py**thon or NumPy is its de-facto standard Python programming
16+
language library that supports large, multi-dimensional arrays and matrices,
17+
and comes with a vast collection of high-level mathematical functions to
18+
operate on these arrays.
19+
20+
Since the launch of NumPy in 2006, Pandas appeared on the landscape in 2008,
21+
and it was not until a couple of years ago that several array computing
22+
libraries showed up in succession, crowding the array computing landscape.
23+
Many of these newer libraries mimic NumPy-like features and capabilites, and
24+
pack newer algorithms and features geared towards machine learning and artificial intelligence applications.
25+
26+
<img
27+
src="/images/content_images/array_c_landscape.png"
28+
alt="arraycl"
29+
title="Array Computing Landscape">
30+
31+
**Array computing** is based on **arrays** data structures. *Arrays* are used
32+
to organize vast amounts of data such that related set of values can be easily
33+
sorted, searched, mathematically manipulated and transformed easily and quickly.
34+
35+
Array computing is *unique* as it involves operating on the data array *at
36+
once*. What this means is that any array operation applies to an entire set of
37+
values in one shot. This vectorized approach provides speed and simplicity by
38+
enabling programmers to code and operate on aggregates of data, without having
39+
to use loops of individual scalar operations.

layouts/partials/tabs.html

+41-3
Original file line numberDiff line numberDiff line change
@@ -60,9 +60,47 @@ <h3 class="subtitle is-5 is-muted">{{ $subtitle }}</h3>
6060

6161
<ul class="cd-tabs__panels">
6262
<li id="tab-inbox" class="cd-tabs__panel cd-tabs__panel--selected text-component">
63-
<p>Visualization Lorem ipsum dolor sit amet, consectetur adipisicing elit. Earum recusandae rem animi accusamus quisquam reprehenderit sed voluptates, numquam, quibusdam velit dolores repellendus tempora corrupti accusantium obcaecati voluptate totam eveniet laboriosam?</p>
64-
65-
<p>Inbox Lorem ipsum dolor sit amet, consectetur adipisicing elit. Earum recusandae rem animi accusamus quisquam reprehenderit sed voluptates, numquam, quibusdam velit dolores repellendus tempora corrupti accusantium obcaecati voluptate totam eveniet laboriosam?</p>
63+
<div class="grid-container">
64+
<div>
65+
<p>
66+
<div class="image-grid">
67+
68+
<div><a href="https://www.fusioncharts.com/blog/best-python-data-visualization-libraries/"><img src="images/content_images/v_matplotlib.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
69+
<div><a href="https://github.com/yhat/ggpy"><img src="images/content_images/v_ggpy.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
70+
<div><a href="https://www.journaldev.com/19692/python-plotly-tutorial"><img src="images/content_images/v_plotly.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
71+
<div><a href="https://altair-viz.github.io/gallery/streamgraph.html "><img src="images/content_images/v_altair.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
72+
<div><a href="https://seaborn.pydata.org"><img src="images/content_images/v_seaborn.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
73+
<div><a href="https://demo.bokeh.org/surface3d"><img src="images/content_images/v_bokeh.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
74+
<div><a href="https://napari.org"><img src="images/content_images/v_napari.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
75+
<div><a href="http://vispy.org/gallery.html"><img src="images/content_images/v_vispy.png" alt="visualization figure" align="middle" style="border-radius: 10px"></a></div>
76+
77+
</div>
78+
</p>
79+
</div>
80+
<div>
81+
<p>
82+
</p>
83+
<p>
84+
<a href="https://www.slideshare.net/Visage/data-visualization-101-how-to-design-chartsandgraphs">Data Visualization</a> exposes patterns, trends and correlations in textual-data, making it easier for humans to analyse and interpret large volumes of data.
85+
</p>
86+
<p>
87+
<a href="https://python-graph-gallery.com">Visualization elements</a> such as bar graphs, pie charts, line charts, maps, infographics, dashboards, geographic maps, heatmaps, and interactive images offer valuable insights for making data-driven decisions.
88+
</p>
89+
</div>
90+
<div>
91+
<p>
92+
NumPy is the key data transformation building block for the burgeoning <a href="https://pyviz.org/overviews/index.html">Python visualization landscape</a> comprising of <a href="https://matplotlib.org">Matplotlib</a>, <a href="https://seaborn.pydata.org">Seaborn</a>, <a href="https://plot.ly">Plotly</a>, <a href="https://altair-viz.github.io">Altair</a>, <a href="https://docs.bokeh.org/en/latest/">Bokeh</a>, <a href="http://holoviz.org">Holoviz</a>, <a href="http://vispy.org">Vispy</a> and <a href="https://github.com/napari/napari">Napari</a>, to name a few.
93+
</p>
94+
<p>
95+
By performing parallel operations on large arrays, all at once, NumPy accelerates data-processing and visualization of large quantities of data, beyond Python's native performance levels, for data visualization at scale.
96+
</p>
97+
</div>
98+
<div>
99+
<p>
100+
<a href="https://rougier.github.io/python-visualization-landscape/landscape-colors.png"><img src="images/content_images/vis-landscape.png" alt="pyviz-visualization" align="left"></a>
101+
</p>
102+
</div>
103+
</div>
66104
</li>
67105

68106
<li id="tab-new" class="cd-tabs__panel text-component">

static/css/tabs.css

+26-1
Original file line numberDiff line numberDiff line change
@@ -605,4 +605,29 @@
605605
100% {
606606
opacity: 1
607607
}
608-
}
608+
}
609+
610+
.grid-container {
611+
display: grid;
612+
grid-template-columns: auto auto ;
613+
grid-gap: 20px;
614+
}
615+
616+
.grid-container > div {
617+
background-color: rgba(255, 255, 255, 0.8);
618+
text-align: middle;
619+
}
620+
621+
.image-grid {
622+
display: grid;
623+
grid-template-columns: auto auto auto auto;
624+
grid-gap: 10px;
625+
}
626+
627+
628+
.image-grid > div {
629+
background-color: light gray;
630+
border: 2px solid #f4f4e9;
631+
border-radius: 10px;
632+
padding: 10px;
633+
}
Loading
Loading
18.2 KB
Loading
18.2 KB
Loading
16.5 KB
Loading
20.7 KB
Loading
35 KB
Loading
9.91 KB
Loading
14.2 KB
Loading
37.7 KB
Loading
606 KB
Loading

0 commit comments

Comments
 (0)