@@ -19,20 +19,21 @@ objects contained with a :class:`Index`, :class:`Series`, or
19
19
For some data types, pandas extends NumPy's type system. String aliases for these types
20
20
can be found at :ref: `basics.dtypes `.
21
21
22
- =================== ========================= ============================= =============================
23
- Kind of Data pandas Data Type Scalar Array
24
- =================== ========================= ============================= =============================
25
- TZ-aware datetime :class: `DatetimeTZDtype ` :class: `Timestamp ` :ref: `api.arrays.datetime `
26
- Timedeltas (none) :class: `Timedelta ` :ref: `api.arrays.timedelta `
27
- Period (time spans) :class: `PeriodDtype ` :class: `Period ` :ref: `api.arrays.period `
28
- Intervals :class: `IntervalDtype ` :class: `Interval ` :ref: `api.arrays.interval `
29
- Nullable Integer :class: `Int64Dtype `, ... (none) :ref: `api.arrays.integer_na `
30
- Categorical :class: `CategoricalDtype ` (none) :ref: `api.arrays.categorical `
31
- Sparse :class: `SparseDtype ` (none) :ref: `api.arrays.sparse `
32
- Strings :class: `StringDtype ` :class: `str ` :ref: `api.arrays.string `
33
- Boolean (with NA) :class: `BooleanDtype ` :class: `bool ` :ref: `api.arrays.bool `
34
- PyArrow :class: `ArrowDtype ` Python Scalars or :class: `NA ` :ref: `api.arrays.arrow `
35
- =================== ========================= ============================= =============================
22
+ =================== ========================== ============================= =============================
23
+ Kind of Data pandas Data Type Scalar Array
24
+ =================== ========================== ============================= =============================
25
+ TZ-aware datetime :class: `DatetimeTZDtype ` :class: `Timestamp ` :ref: `api.arrays.datetime `
26
+ Timedeltas (none) :class: `Timedelta ` :ref: `api.arrays.timedelta `
27
+ Period (time spans) :class: `PeriodDtype ` :class: `Period ` :ref: `api.arrays.period `
28
+ Intervals :class: `IntervalDtype ` :class: `Interval ` :ref: `api.arrays.interval `
29
+ Nullable Integer :class: `Int64Dtype `, ... (none) :ref: `api.arrays.integer_na `
30
+ Nullable Float :class: `Float64Dtype `, ... (none) :ref: `api.arrays.float_na `
31
+ Categorical :class: `CategoricalDtype ` (none) :ref: `api.arrays.categorical `
32
+ Sparse :class: `SparseDtype ` (none) :ref: `api.arrays.sparse `
33
+ Strings :class: `StringDtype ` :class: `str ` :ref: `api.arrays.string `
34
+ Nullable Boolean :class: `BooleanDtype ` :class: `bool ` :ref: `api.arrays.bool `
35
+ PyArrow :class: `ArrowDtype ` Python Scalars or :class: `NA ` :ref: `api.arrays.arrow `
36
+ =================== ========================== ============================= =============================
36
37
37
38
pandas and third-party libraries can extend NumPy's type system (see :ref: `extending.extension-types `).
38
39
The top-level :meth: `array ` method can be used to create a new array, which may be
@@ -91,13 +92,20 @@ with the :class:`arrays.DatetimeArray` extension array, which can hold timezone-
91
92
or timezone-aware values.
92
93
93
94
:class: `Timestamp `, a subclass of :class: `datetime.datetime `, is pandas'
94
- scalar type for timezone-naive or timezone-aware datetime data.
95
+ scalar type for timezone-naive or timezone-aware datetime data. :class: `NaT `
96
+ is the missing value for datetime data.
95
97
96
98
.. autosummary ::
97
99
:toctree: api/
98
100
99
101
Timestamp
100
102
103
+ .. autosummary ::
104
+ :toctree: api/
105
+ :template: autosummary/class_without_autosummary.rst
106
+
107
+ NaT
108
+
101
109
Properties
102
110
~~~~~~~~~~
103
111
.. autosummary ::
@@ -208,13 +216,20 @@ Timedeltas
208
216
----------
209
217
210
218
NumPy can natively represent timedeltas. pandas provides :class: `Timedelta `
211
- for symmetry with :class: `Timestamp `.
219
+ for symmetry with :class: `Timestamp `. :class: `NaT `
220
+ is the missing value for timedelta data.
212
221
213
222
.. autosummary ::
214
223
:toctree: api/
215
224
216
225
Timedelta
217
226
227
+ .. autosummary ::
228
+ :toctree: api/
229
+ :template: autosummary/class_without_autosummary.rst
230
+
231
+ NaT
232
+
218
233
Properties
219
234
~~~~~~~~~~
220
235
.. autosummary ::
@@ -419,6 +434,26 @@ pandas provides this through :class:`arrays.IntegerArray`.
419
434
UInt16Dtype
420
435
UInt32Dtype
421
436
UInt64Dtype
437
+ NA
438
+
439
+ .. _api.arrays.float_na :
440
+
441
+ Nullable float
442
+ --------------
443
+
444
+ .. autosummary ::
445
+ :toctree: api/
446
+ :template: autosummary/class_without_autosummary.rst
447
+
448
+ arrays.FloatingArray
449
+
450
+ .. autosummary ::
451
+ :toctree: api/
452
+ :template: autosummary/class_without_autosummary.rst
453
+
454
+ Float32Dtype
455
+ Float64Dtype
456
+ NA
422
457
423
458
.. _api.arrays.categorical :
424
459
@@ -555,6 +590,7 @@ with a bool :class:`numpy.ndarray`.
555
590
:template: autosummary/class_without_autosummary.rst
556
591
557
592
BooleanDtype
593
+ NA
558
594
559
595
560
596
.. Dtype attributes which are manually listed in their docstrings: including
0 commit comments