|
| 1 | +""" |
| 2 | +https://en.wikipedia.org/wiki/Bidirectional_search |
| 3 | +""" |
| 4 | + |
| 5 | +import time |
| 6 | +from typing import List, Tuple |
| 7 | + |
| 8 | +grid = [ |
| 9 | + [0, 0, 0, 0, 0, 0, 0], |
| 10 | + [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles |
| 11 | + [0, 0, 0, 0, 0, 0, 0], |
| 12 | + [0, 0, 1, 0, 0, 0, 0], |
| 13 | + [1, 0, 1, 0, 0, 0, 0], |
| 14 | + [0, 0, 0, 0, 0, 0, 0], |
| 15 | + [0, 0, 0, 0, 1, 0, 0], |
| 16 | +] |
| 17 | + |
| 18 | +delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right |
| 19 | + |
| 20 | + |
| 21 | +class Node: |
| 22 | + """ |
| 23 | + >>> k = Node(0, 0, 4, 5, 0, None) |
| 24 | + >>> k.calculate_heuristic() |
| 25 | + 9 |
| 26 | + >>> n = Node(1, 4, 3, 4, 2, None) |
| 27 | + >>> n.calculate_heuristic() |
| 28 | + 2 |
| 29 | + >>> l = [k, n] |
| 30 | + >>> n == l[0] |
| 31 | + False |
| 32 | + >>> l.sort() |
| 33 | + >>> n == l[0] |
| 34 | + True |
| 35 | + """ |
| 36 | + |
| 37 | + def __init__(self, pos_x, pos_y, goal_x, goal_y, g_cost, parent): |
| 38 | + self.pos_x = pos_x |
| 39 | + self.pos_y = pos_y |
| 40 | + self.pos = (pos_y, pos_x) |
| 41 | + self.goal_x = goal_x |
| 42 | + self.goal_y = goal_y |
| 43 | + self.g_cost = g_cost |
| 44 | + self.parent = parent |
| 45 | + self.h_cost = self.calculate_heuristic() |
| 46 | + self.f_cost = self.g_cost + self.h_cost |
| 47 | + |
| 48 | + def calculate_heuristic(self) -> float: |
| 49 | + """ |
| 50 | + The heuristic here is the Manhattan Distance |
| 51 | + Could elaborate to offer more than one choice |
| 52 | + """ |
| 53 | + dy = abs(self.pos_x - self.goal_x) |
| 54 | + dx = abs(self.pos_y - self.goal_y) |
| 55 | + return dx + dy |
| 56 | + |
| 57 | + def __lt__(self, other): |
| 58 | + return self.f_cost < other.f_cost |
| 59 | + |
| 60 | + |
| 61 | +class AStar: |
| 62 | + def __init__(self, start, goal): |
| 63 | + self.start = Node(start[1], start[0], goal[1], goal[0], 0, None) |
| 64 | + self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None) |
| 65 | + |
| 66 | + self.open_nodes = [self.start] |
| 67 | + self.closed_nodes = [] |
| 68 | + |
| 69 | + self.reached = False |
| 70 | + |
| 71 | + self.path = [(self.start.pos_y, self.start.pos_x)] |
| 72 | + self.costs = [0] |
| 73 | + |
| 74 | + def search(self): |
| 75 | + while self.open_nodes: |
| 76 | + # Open Nodes are sorted using __lt__ |
| 77 | + self.open_nodes.sort() |
| 78 | + current_node = self.open_nodes.pop(0) |
| 79 | + |
| 80 | + if current_node.pos == self.target.pos: |
| 81 | + self.reached = True |
| 82 | + self.path = self.retrace_path(current_node) |
| 83 | + break |
| 84 | + |
| 85 | + self.closed_nodes.append(current_node) |
| 86 | + successors = self.get_successors(current_node) |
| 87 | + |
| 88 | + for child_node in successors: |
| 89 | + if child_node in self.closed_nodes: |
| 90 | + continue |
| 91 | + |
| 92 | + if child_node not in self.open_nodes: |
| 93 | + self.open_nodes.append(child_node) |
| 94 | + else: |
| 95 | + # retrieve the best current path |
| 96 | + better_node = self.open_nodes.pop(self.open_nodes.index(child_node)) |
| 97 | + |
| 98 | + if child_node.g_cost < better_node.g_cost: |
| 99 | + self.open_nodes.append(child_node) |
| 100 | + else: |
| 101 | + self.open_nodes.append(better_node) |
| 102 | + |
| 103 | + if not (self.reached): |
| 104 | + print("No path found") |
| 105 | + |
| 106 | + def get_successors(self, parent: Node) -> List[Node]: |
| 107 | + """ |
| 108 | + Returns a list of successors (both in the grid and free spaces) |
| 109 | + """ |
| 110 | + successors = [] |
| 111 | + for action in delta: |
| 112 | + pos_x = parent.pos_x + action[1] |
| 113 | + pos_y = parent.pos_y + action[0] |
| 114 | + if not (0 < pos_x < len(grid[0]) - 1 and 0 < pos_y < len(grid) - 1): |
| 115 | + continue |
| 116 | + |
| 117 | + if grid[pos_y][pos_x] != 0: |
| 118 | + continue |
| 119 | + |
| 120 | + node_ = Node( |
| 121 | + pos_x, |
| 122 | + pos_y, |
| 123 | + self.target.pos_y, |
| 124 | + self.target.pos_x, |
| 125 | + parent.g_cost + 1, |
| 126 | + parent, |
| 127 | + ) |
| 128 | + successors.append(node_) |
| 129 | + return successors |
| 130 | + |
| 131 | + def retrace_path(self, node: Node) -> List[Tuple[int]]: |
| 132 | + """ |
| 133 | + Retrace the path from parents to parents until start node |
| 134 | + """ |
| 135 | + current_node = node |
| 136 | + path = [] |
| 137 | + while current_node is not None: |
| 138 | + path.append((current_node.pos_y, current_node.pos_x)) |
| 139 | + current_node = current_node.parent |
| 140 | + path.reverse() |
| 141 | + return path |
| 142 | + |
| 143 | + |
| 144 | +class BidirectionalAStar: |
| 145 | + def __init__(self, start, goal): |
| 146 | + self.fwd_astar = AStar(start, goal) |
| 147 | + self.bwd_astar = AStar(goal, start) |
| 148 | + self.reached = False |
| 149 | + self.path = self.fwd_astar.path |
| 150 | + |
| 151 | + def search(self): |
| 152 | + while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: |
| 153 | + self.fwd_astar.open_nodes.sort() |
| 154 | + self.bwd_astar.open_nodes.sort() |
| 155 | + current_fwd_node = self.fwd_astar.open_nodes.pop(0) |
| 156 | + current_bwd_node = self.bwd_astar.open_nodes.pop(0) |
| 157 | + |
| 158 | + if current_bwd_node.pos == current_fwd_node.pos: |
| 159 | + self.reached = True |
| 160 | + self.retrace_bidirectional_path(current_fwd_node, current_bwd_node) |
| 161 | + break |
| 162 | + |
| 163 | + self.fwd_astar.closed_nodes.append(current_fwd_node) |
| 164 | + self.bwd_astar.closed_nodes.append(current_bwd_node) |
| 165 | + |
| 166 | + self.fwd_astar.target = current_bwd_node |
| 167 | + self.bwd_astar.target = current_fwd_node |
| 168 | + |
| 169 | + successors = { |
| 170 | + self.fwd_astar: self.fwd_astar.get_successors(current_fwd_node), |
| 171 | + self.bwd_astar: self.bwd_astar.get_successors(current_bwd_node), |
| 172 | + } |
| 173 | + |
| 174 | + for astar in [self.fwd_astar, self.bwd_astar]: |
| 175 | + for child_node in successors[astar]: |
| 176 | + if child_node in astar.closed_nodes: |
| 177 | + continue |
| 178 | + |
| 179 | + if child_node not in astar.open_nodes: |
| 180 | + astar.open_nodes.append(child_node) |
| 181 | + else: |
| 182 | + # retrieve the best current path |
| 183 | + better_node = astar.open_nodes.pop( |
| 184 | + astar.open_nodes.index(child_node) |
| 185 | + ) |
| 186 | + |
| 187 | + if child_node.g_cost < better_node.g_cost: |
| 188 | + astar.open_nodes.append(child_node) |
| 189 | + else: |
| 190 | + astar.open_nodes.append(better_node) |
| 191 | + |
| 192 | + def retrace_bidirectional_path( |
| 193 | + self, fwd_node: Node, bwd_node: Node |
| 194 | + ) -> List[Tuple[int]]: |
| 195 | + fwd_path = self.fwd_astar.retrace_path(fwd_node) |
| 196 | + bwd_path = self.bwd_astar.retrace_path(bwd_node) |
| 197 | + fwd_path.reverse() |
| 198 | + path = fwd_path + bwd_path |
| 199 | + return path |
| 200 | + |
| 201 | + |
| 202 | +# all coordinates are given in format [y,x] |
| 203 | +init = (0, 0) |
| 204 | +goal = (len(grid) - 1, len(grid[0]) - 1) |
| 205 | +for elem in grid: |
| 206 | + print(elem) |
| 207 | + |
| 208 | +start_time = time.time() |
| 209 | +a_star = AStar(init, goal) |
| 210 | +a_star.search() |
| 211 | +end_time = time.time() - start_time |
| 212 | +print(f"AStar execution time = {end_time:f} seconds") |
| 213 | + |
| 214 | +bd_start_time = time.time() |
| 215 | +bidir_astar = BidirectionalAStar(init, goal) |
| 216 | +bidir_astar.search() |
| 217 | +bd_end_time = time.time() - bd_start_time |
| 218 | +print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds") |
0 commit comments