forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_graphics.py
1091 lines (887 loc) · 38.1 KB
/
test_graphics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import nose
import os
import string
import unittest
from datetime import datetime, date
from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range
from pandas.compat import range, lrange, StringIO, lmap, lzip, u, map, zip
import pandas.util.testing as tm
from pandas.util.testing import ensure_clean
from pandas.core.config import set_option
import numpy as np
from numpy import random
from numpy.testing import assert_array_equal
from numpy.testing.decorators import slow
import pandas.tools.plotting as plotting
def _skip_if_no_scipy():
try:
import scipy
except ImportError:
raise nose.SkipTest
class TestSeriesPlots(unittest.TestCase):
@classmethod
def setUpClass(cls):
try:
import matplotlib as mpl
mpl.use('Agg', warn=False)
except ImportError:
raise nose.SkipTest
def setUp(self):
self.ts = tm.makeTimeSeries()
self.ts.name = 'ts'
self.series = tm.makeStringSeries()
self.series.name = 'series'
self.iseries = tm.makePeriodSeries()
self.iseries.name = 'iseries'
def tearDown(self):
import matplotlib.pyplot as plt
plt.close('all')
@slow
def test_plot(self):
_check_plot_works(self.ts.plot, label='foo')
_check_plot_works(self.ts.plot, use_index=False)
_check_plot_works(self.ts.plot, rot=0)
_check_plot_works(self.ts.plot, style='.', logy=True)
_check_plot_works(self.ts.plot, style='.', logx=True)
_check_plot_works(self.ts.plot, style='.', loglog=True)
_check_plot_works(self.ts[:10].plot, kind='bar')
_check_plot_works(self.series[:5].plot, kind='bar')
_check_plot_works(self.series[:5].plot, kind='line')
_check_plot_works(self.series[:5].plot, kind='barh')
_check_plot_works(self.series[:10].plot, kind='barh')
Series(np.random.randn(10)).plot(kind='bar', color='black')
# figsize and title
import matplotlib.pyplot as plt
plt.close('all')
ax = self.series.plot(title='Test', figsize=(16, 8))
self.assert_(ax.title.get_text() == 'Test')
self.assert_((np.round(ax.figure.get_size_inches())
== np.array((16., 8.))).all())
@slow
def test_bar_colors(self):
import matplotlib.pyplot as plt
import matplotlib.colors as colors
default_colors = plt.rcParams.get('axes.color_cycle')
custom_colors = 'rgcby'
plt.close('all')
df = DataFrame(np.random.randn(5, 5))
ax = df.plot(kind='bar')
rects = ax.patches
conv = colors.colorConverter
for i, rect in enumerate(rects[::5]):
xp = conv.to_rgba(default_colors[i % len(default_colors)])
rs = rect.get_facecolor()
self.assert_(xp == rs)
plt.close('all')
ax = df.plot(kind='bar', color=custom_colors)
rects = ax.patches
conv = colors.colorConverter
for i, rect in enumerate(rects[::5]):
xp = conv.to_rgba(custom_colors[i])
rs = rect.get_facecolor()
self.assert_(xp == rs)
plt.close('all')
from matplotlib import cm
# Test str -> colormap functionality
ax = df.plot(kind='bar', colormap='jet')
rects = ax.patches
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
for i, rect in enumerate(rects[::5]):
xp = rgba_colors[i]
rs = rect.get_facecolor()
self.assert_(xp == rs)
plt.close('all')
# Test colormap functionality
ax = df.plot(kind='bar', colormap=cm.jet)
rects = ax.patches
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
for i, rect in enumerate(rects[::5]):
xp = rgba_colors[i]
rs = rect.get_facecolor()
self.assert_(xp == rs)
plt.close('all')
df.ix[:, [0]].plot(kind='bar', color='DodgerBlue')
@slow
def test_bar_linewidth(self):
df = DataFrame(np.random.randn(5, 5))
# regular
ax = df.plot(kind='bar', linewidth=2)
for r in ax.patches:
self.assert_(r.get_linewidth() == 2)
# stacked
ax = df.plot(kind='bar', stacked=True, linewidth=2)
for r in ax.patches:
self.assert_(r.get_linewidth() == 2)
# subplots
axes = df.plot(kind='bar', linewidth=2, subplots=True)
for ax in axes:
for r in ax.patches:
self.assert_(r.get_linewidth() == 2)
def test_rotation(self):
df = DataFrame(np.random.randn(5, 5))
ax = df.plot(rot=30)
for l in ax.get_xticklabels():
self.assert_(l.get_rotation() == 30)
def test_irregular_datetime(self):
rng = date_range('1/1/2000', '3/1/2000')
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
ser = Series(np.random.randn(len(rng)), rng)
ax = ser.plot()
xp = datetime(1999, 1, 1).toordinal()
ax.set_xlim('1/1/1999', '1/1/2001')
self.assert_(xp == ax.get_xlim()[0])
@slow
def test_hist(self):
_check_plot_works(self.ts.hist)
_check_plot_works(self.ts.hist, grid=False)
_check_plot_works(self.ts.hist, figsize=(8, 10))
_check_plot_works(self.ts.hist, by=self.ts.index.month)
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
_check_plot_works(self.ts.hist, ax=ax)
_check_plot_works(self.ts.hist, ax=ax, figure=fig)
_check_plot_works(self.ts.hist, figure=fig)
plt.close('all')
fig, (ax1, ax2) = plt.subplots(1, 2)
_check_plot_works(self.ts.hist, figure=fig, ax=ax1)
_check_plot_works(self.ts.hist, figure=fig, ax=ax2)
self.assertRaises(ValueError, self.ts.hist, by=self.ts.index,
figure=fig)
@slow
def test_hist_layout(self):
n = 10
df = DataFrame({'gender': np.array(['Male',
'Female'])[random.randint(2,
size=n)],
'height': random.normal(66, 4, size=n), 'weight':
random.normal(161, 32, size=n)})
self.assertRaises(ValueError, df.height.hist, layout=(1, 1))
self.assertRaises(ValueError, df.height.hist, layout=[1, 1])
@slow
def test_hist_layout_with_by(self):
import matplotlib.pyplot as plt
n = 10
df = DataFrame({'gender': np.array(['Male',
'Female'])[random.randint(2,
size=n)],
'height': random.normal(66, 4, size=n), 'weight':
random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
_check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
plt.close('all')
_check_plot_works(df.height.hist, by=df.gender, layout=(1, 2))
plt.close('all')
_check_plot_works(df.weight.hist, by=df.category, layout=(1, 4))
plt.close('all')
_check_plot_works(df.weight.hist, by=df.category, layout=(4, 1))
plt.close('all')
def test_plot_fails_when_ax_differs_from_figure(self):
from pylab import figure
fig1 = figure()
fig2 = figure()
ax1 = fig1.add_subplot(111)
self.assertRaises(AssertionError, self.ts.hist, ax=ax1, figure=fig2)
@slow
def test_kde(self):
_skip_if_no_scipy()
_check_plot_works(self.ts.plot, kind='kde')
_check_plot_works(self.ts.plot, kind='density')
ax = self.ts.plot(kind='kde', logy=True)
self.assert_(ax.get_yscale() == 'log')
def test_kde_color(self):
_skip_if_no_scipy()
ax = self.ts.plot(kind='kde', logy=True, color='r')
lines = ax.get_lines()
self.assertEqual(len(lines), 1)
self.assertEqual(lines[0].get_color(), 'r')
@slow
def test_autocorrelation_plot(self):
from pandas.tools.plotting import autocorrelation_plot
_check_plot_works(autocorrelation_plot, self.ts)
_check_plot_works(autocorrelation_plot, self.ts.values)
@slow
def test_lag_plot(self):
from pandas.tools.plotting import lag_plot
_check_plot_works(lag_plot, self.ts)
_check_plot_works(lag_plot, self.ts, lag=5)
@slow
def test_bootstrap_plot(self):
from pandas.tools.plotting import bootstrap_plot
_check_plot_works(bootstrap_plot, self.ts, size=10)
def test_invalid_plot_data(self):
s = Series(list('abcd'))
kinds = 'line', 'bar', 'barh', 'kde', 'density'
for kind in kinds:
self.assertRaises(TypeError, s.plot, kind=kind)
@slow
def test_valid_object_plot(self):
s = Series(lrange(10), dtype=object)
kinds = 'line', 'bar', 'barh', 'kde', 'density'
for kind in kinds:
_check_plot_works(s.plot, kind=kind)
def test_partially_invalid_plot_data(self):
s = Series(['a', 'b', 1.0, 2])
kinds = 'line', 'bar', 'barh', 'kde', 'density'
for kind in kinds:
self.assertRaises(TypeError, s.plot, kind=kind)
def test_invalid_kind(self):
s = Series([1, 2])
self.assertRaises(ValueError, s.plot, kind='aasdf')
class TestDataFramePlots(unittest.TestCase):
@classmethod
def setUpClass(cls):
# import sys
# if 'IPython' in sys.modules:
# raise nose.SkipTest
try:
import matplotlib as mpl
mpl.use('Agg', warn=False)
except ImportError:
raise nose.SkipTest
def tearDown(self):
import matplotlib.pyplot as plt
plt.close('all')
@slow
def test_plot(self):
df = tm.makeTimeDataFrame()
_check_plot_works(df.plot, grid=False)
_check_plot_works(df.plot, subplots=True)
_check_plot_works(df.plot, subplots=True, use_index=False)
df = DataFrame({'x': [1, 2], 'y': [3, 4]})
self._check_plot_fails(df.plot, kind='line', blarg=True)
df = DataFrame(np.random.rand(10, 3),
index=list(string.ascii_letters[:10]))
_check_plot_works(df.plot, use_index=True)
_check_plot_works(df.plot, sort_columns=False)
_check_plot_works(df.plot, yticks=[1, 5, 10])
_check_plot_works(df.plot, xticks=[1, 5, 10])
_check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100))
_check_plot_works(df.plot, subplots=True, title='blah')
_check_plot_works(df.plot, title='blah')
tuples = lzip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3),
index=MultiIndex.from_tuples(tuples))
_check_plot_works(df.plot, use_index=True)
# unicode
index = MultiIndex.from_tuples([(u('\u03b1'), 0),
(u('\u03b1'), 1),
(u('\u03b2'), 2),
(u('\u03b2'), 3),
(u('\u03b3'), 4),
(u('\u03b3'), 5),
(u('\u03b4'), 6),
(u('\u03b4'), 7)], names=['i0', 'i1'])
columns = MultiIndex.from_tuples([('bar', u('\u0394')),
('bar', u('\u0395'))], names=['c0',
'c1'])
df = DataFrame(np.random.randint(0, 10, (8, 2)),
columns=columns,
index=index)
_check_plot_works(df.plot, title=u('\u03A3'))
def test_nonnumeric_exclude(self):
import matplotlib.pyplot as plt
plt.close('all')
df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]})
ax = df.plot()
self.assert_(len(ax.get_lines()) == 1) # B was plotted
@slow
def test_label(self):
import matplotlib.pyplot as plt
plt.close('all')
df = DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c'])
ax = df.plot(x='a', y='b')
self.assert_(ax.xaxis.get_label().get_text() == 'a')
plt.close('all')
ax = df.plot(x='a', y='b', label='LABEL')
self.assert_(ax.xaxis.get_label().get_text() == 'LABEL')
@slow
def test_plot_xy(self):
import matplotlib.pyplot as plt
# columns.inferred_type == 'string'
df = tm.makeTimeDataFrame()
self._check_data(df.plot(x=0, y=1),
df.set_index('A')['B'].plot())
self._check_data(df.plot(x=0), df.set_index('A').plot())
self._check_data(df.plot(y=0), df.B.plot())
self._check_data(df.plot(x='A', y='B'),
df.set_index('A').B.plot())
self._check_data(df.plot(x='A'), df.set_index('A').plot())
self._check_data(df.plot(y='B'), df.B.plot())
# columns.inferred_type == 'integer'
df.columns = lrange(1, len(df.columns) + 1)
self._check_data(df.plot(x=1, y=2),
df.set_index(1)[2].plot())
self._check_data(df.plot(x=1), df.set_index(1).plot())
self._check_data(df.plot(y=1), df[1].plot())
# figsize and title
plt.close('all')
ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8))
self.assert_(ax.title.get_text() == 'Test')
self.assert_((np.round(ax.figure.get_size_inches())
== np.array((16., 8.))).all())
# columns.inferred_type == 'mixed'
# TODO add MultiIndex test
@slow
def test_xcompat(self):
import pandas as pd
import matplotlib.pyplot as plt
df = tm.makeTimeDataFrame()
ax = df.plot(x_compat=True)
lines = ax.get_lines()
self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex))
plt.close('all')
pd.plot_params['xaxis.compat'] = True
ax = df.plot()
lines = ax.get_lines()
self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex))
plt.close('all')
pd.plot_params['x_compat'] = False
ax = df.plot()
lines = ax.get_lines()
tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex)
plt.close('all')
# useful if you're plotting a bunch together
with pd.plot_params.use('x_compat', True):
ax = df.plot()
lines = ax.get_lines()
self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex))
plt.close('all')
ax = df.plot()
lines = ax.get_lines()
tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex)
def test_unsorted_index(self):
df = DataFrame({'y': np.arange(100)},
index=np.arange(99, -1, -1))
ax = df.plot()
l = ax.get_lines()[0]
rs = l.get_xydata()
rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64)
tm.assert_series_equal(rs, df.y)
def _check_data(self, xp, rs):
xp_lines = xp.get_lines()
rs_lines = rs.get_lines()
def check_line(xpl, rsl):
xpdata = xpl.get_xydata()
rsdata = rsl.get_xydata()
assert_array_equal(xpdata, rsdata)
[check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)]
@slow
def test_subplots(self):
df = DataFrame(np.random.rand(10, 3),
index=list(string.ascii_letters[:10]))
axes = df.plot(subplots=True, sharex=True, legend=True)
for ax in axes:
self.assert_(ax.get_legend() is not None)
axes = df.plot(subplots=True, sharex=True)
for ax in axes[:-2]:
[self.assert_(not label.get_visible())
for label in ax.get_xticklabels()]
[self.assert_(label.get_visible())
for label in ax.get_yticklabels()]
[self.assert_(label.get_visible())
for label in axes[-1].get_xticklabels()]
[self.assert_(label.get_visible())
for label in axes[-1].get_yticklabels()]
axes = df.plot(subplots=True, sharex=False)
for ax in axes:
[self.assert_(label.get_visible())
for label in ax.get_xticklabels()]
[self.assert_(label.get_visible())
for label in ax.get_yticklabels()]
@slow
def test_plot_bar(self):
df = DataFrame(np.random.randn(6, 4),
index=list(string.ascii_letters[:6]),
columns=['one', 'two', 'three', 'four'])
_check_plot_works(df.plot, kind='bar')
_check_plot_works(df.plot, kind='bar', legend=False)
_check_plot_works(df.plot, kind='bar', subplots=True)
_check_plot_works(df.plot, kind='bar', stacked=True)
df = DataFrame(np.random.randn(10, 15),
index=list(string.ascii_letters[:10]),
columns=lrange(15))
_check_plot_works(df.plot, kind='bar')
df = DataFrame({'a': [0, 1], 'b': [1, 0]})
_check_plot_works(df.plot, kind='bar')
def test_bar_stacked_center(self):
# GH2157
df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5))
ax = df.plot(kind='bar', stacked='True', grid=True)
self.assertEqual(ax.xaxis.get_ticklocs()[0],
ax.patches[0].get_x() + ax.patches[0].get_width() / 2)
def test_bar_center(self):
df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5))
ax = df.plot(kind='bar', grid=True)
self.assertEqual(ax.xaxis.get_ticklocs()[0],
ax.patches[0].get_x() + ax.patches[0].get_width())
@slow
def test_bar_log(self):
# GH3254, GH3298 matplotlib/matplotlib#1882, #1892
# regressions in 1.2.1
df = DataFrame({'A': [3] * 5, 'B': lrange(1, 6)}, index=lrange(5))
ax = df.plot(kind='bar', grid=True, log=True)
self.assertEqual(ax.yaxis.get_ticklocs()[0], 1.0)
p1 = Series([200, 500]).plot(log=True, kind='bar')
p2 = DataFrame([Series([200, 300]),
Series([300, 500])]).plot(log=True, kind='bar',
subplots=True)
(p1.yaxis.get_ticklocs() == np.array([0.625, 1.625]))
(p2[0].yaxis.get_ticklocs() == np.array([1., 10., 100., 1000.])).all()
(p2[1].yaxis.get_ticklocs() == np.array([1., 10., 100., 1000.])).all()
@slow
def test_boxplot(self):
df = DataFrame(np.random.randn(6, 4),
index=list(string.ascii_letters[:6]),
columns=['one', 'two', 'three', 'four'])
df['indic'] = ['foo', 'bar'] * 3
df['indic2'] = ['foo', 'bar', 'foo'] * 2
_check_plot_works(df.boxplot)
_check_plot_works(df.boxplot, column=['one', 'two'])
_check_plot_works(df.boxplot, column=['one', 'two'],
by='indic')
_check_plot_works(df.boxplot, column='one', by=['indic', 'indic2'])
_check_plot_works(df.boxplot, by='indic')
_check_plot_works(df.boxplot, by=['indic', 'indic2'])
_check_plot_works(lambda x: plotting.boxplot(x), df['one'])
_check_plot_works(df.boxplot, notch=1)
_check_plot_works(df.boxplot, by='indic', notch=1)
df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'])
df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])
_check_plot_works(df.boxplot, by='X')
@slow
def test_kde(self):
_skip_if_no_scipy()
df = DataFrame(np.random.randn(100, 4))
_check_plot_works(df.plot, kind='kde')
_check_plot_works(df.plot, kind='kde', subplots=True)
ax = df.plot(kind='kde')
self.assert_(ax.get_legend() is not None)
axes = df.plot(kind='kde', logy=True, subplots=True)
for ax in axes:
self.assert_(ax.get_yscale() == 'log')
@slow
def test_hist(self):
import matplotlib.pyplot as plt
df = DataFrame(np.random.randn(100, 4))
_check_plot_works(df.hist)
_check_plot_works(df.hist, grid=False)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 3))
_check_plot_works(df.hist)
axes = df.hist(grid=False)
self.assert_(not axes[1, 1].get_visible())
df = DataFrame(np.random.randn(100, 1))
_check_plot_works(df.hist)
# make sure layout is handled
df = DataFrame(np.random.randn(100, 6))
_check_plot_works(df.hist)
# make sure sharex, sharey is handled
_check_plot_works(df.hist, sharex=True, sharey=True)
# handle figsize arg
_check_plot_works(df.hist, figsize=(8, 10))
# make sure xlabelsize and xrot are handled
ser = df[0]
xf, yf = 20, 20
xrot, yrot = 30, 30
ax = ser.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30)
ytick = ax.get_yticklabels()[0]
xtick = ax.get_xticklabels()[0]
self.assertAlmostEqual(ytick.get_fontsize(), yf)
self.assertAlmostEqual(ytick.get_rotation(), yrot)
self.assertAlmostEqual(xtick.get_fontsize(), xf)
self.assertAlmostEqual(xtick.get_rotation(), xrot)
xf, yf = 20, 20
xrot, yrot = 30, 30
axes = df.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30)
for i, ax in enumerate(axes.ravel()):
if i < len(df.columns):
ytick = ax.get_yticklabels()[0]
xtick = ax.get_xticklabels()[0]
self.assertAlmostEqual(ytick.get_fontsize(), yf)
self.assertAlmostEqual(ytick.get_rotation(), yrot)
self.assertAlmostEqual(xtick.get_fontsize(), xf)
self.assertAlmostEqual(xtick.get_rotation(), xrot)
plt.close('all')
# make sure kwargs to hist are handled
ax = ser.hist(normed=True, cumulative=True, bins=4)
# height of last bin (index 5) must be 1.0
self.assertAlmostEqual(ax.get_children()[5].get_height(), 1.0)
plt.close('all')
ax = ser.hist(log=True)
# scale of y must be 'log'
self.assert_(ax.get_yscale() == 'log')
plt.close('all')
# propagate attr exception from matplotlib.Axes.hist
self.assertRaises(AttributeError, ser.hist, foo='bar')
@slow
def test_hist_layout(self):
import matplotlib.pyplot as plt
plt.close('all')
df = DataFrame(np.random.randn(100, 4))
layout_to_expected_size = (
{'layout': None, 'expected_size': (2, 2)}, # default is 2x2
{'layout': (2, 2), 'expected_size': (2, 2)},
{'layout': (4, 1), 'expected_size': (4, 1)},
{'layout': (1, 4), 'expected_size': (1, 4)},
{'layout': (3, 3), 'expected_size': (3, 3)},
)
for layout_test in layout_to_expected_size:
ax = df.hist(layout=layout_test['layout'])
self.assert_(len(ax) == layout_test['expected_size'][0])
self.assert_(len(ax[0]) == layout_test['expected_size'][1])
# layout too small for all 4 plots
self.assertRaises(ValueError, df.hist, layout=(1, 1))
# invalid format for layout
self.assertRaises(ValueError, df.hist, layout=(1,))
@slow
def test_scatter(self):
_skip_if_no_scipy()
df = DataFrame(np.random.randn(100, 4))
df = DataFrame(np.random.randn(100, 2))
import pandas.tools.plotting as plt
def scat(**kwds):
return plt.scatter_matrix(df, **kwds)
_check_plot_works(scat)
_check_plot_works(scat, marker='+')
_check_plot_works(scat, vmin=0)
_check_plot_works(scat, diagonal='kde')
_check_plot_works(scat, diagonal='density')
_check_plot_works(scat, diagonal='hist')
def scat2(x, y, by=None, ax=None, figsize=None):
return plt.scatter_plot(df, x, y, by, ax, figsize=None)
_check_plot_works(scat2, 0, 1)
grouper = Series(np.repeat([1, 2, 3, 4, 5], 20), df.index)
_check_plot_works(scat2, 0, 1, by=grouper)
@slow
def test_andrews_curves(self):
from pandas import read_csv
from pandas.tools.plotting import andrews_curves
path = os.path.join(curpath(), 'data/iris.csv')
df = read_csv(path)
_check_plot_works(andrews_curves, df, 'Name')
@slow
def test_parallel_coordinates(self):
from pandas import read_csv
from pandas.tools.plotting import parallel_coordinates
from matplotlib import cm
path = os.path.join(curpath(), 'data/iris.csv')
df = read_csv(path)
_check_plot_works(parallel_coordinates, df, 'Name')
_check_plot_works(parallel_coordinates, df, 'Name',
colors=('#556270', '#4ECDC4', '#C7F464'))
_check_plot_works(parallel_coordinates, df, 'Name',
colors=['dodgerblue', 'aquamarine', 'seagreen'])
_check_plot_works(parallel_coordinates, df, 'Name',
colors=('#556270', '#4ECDC4', '#C7F464'))
_check_plot_works(parallel_coordinates, df, 'Name',
colors=['dodgerblue', 'aquamarine', 'seagreen'])
_check_plot_works(parallel_coordinates, df, 'Name', colormap=cm.jet)
df = read_csv(
path, header=None, skiprows=1, names=[1, 2, 4, 8, 'Name'])
_check_plot_works(parallel_coordinates, df, 'Name', use_columns=True)
_check_plot_works(parallel_coordinates, df, 'Name',
xticks=[1, 5, 25, 125])
@slow
def test_radviz(self):
from pandas import read_csv
from pandas.tools.plotting import radviz
from matplotlib import cm
path = os.path.join(curpath(), 'data/iris.csv')
df = read_csv(path)
_check_plot_works(radviz, df, 'Name')
_check_plot_works(radviz, df, 'Name', colormap=cm.jet)
@slow
def test_plot_int_columns(self):
df = DataFrame(np.random.randn(100, 4)).cumsum()
_check_plot_works(df.plot, legend=True)
def test_legend_name(self):
multi = DataFrame(np.random.randn(4, 4),
columns=[np.array(['a', 'a', 'b', 'b']),
np.array(['x', 'y', 'x', 'y'])])
multi.columns.names = ['group', 'individual']
ax = multi.plot()
leg_title = ax.legend_.get_title()
self.assert_(leg_title.get_text(), 'group,individual')
def _check_plot_fails(self, f, *args, **kwargs):
self.assertRaises(Exception, f, *args, **kwargs)
@slow
def test_style_by_column(self):
import matplotlib.pyplot as plt
fig = plt.gcf()
df = DataFrame(np.random.randn(100, 3))
for markers in [{0: '^', 1: '+', 2: 'o'},
{0: '^', 1: '+'},
['^', '+', 'o'],
['^', '+']]:
fig.clf()
fig.add_subplot(111)
ax = df.plot(style=markers)
for i, l in enumerate(ax.get_lines()[:len(markers)]):
self.assertEqual(l.get_marker(), markers[i])
@slow
def test_line_colors(self):
import matplotlib.pyplot as plt
import sys
from matplotlib import cm
custom_colors = 'rgcby'
plt.close('all')
df = DataFrame(np.random.randn(5, 5))
ax = df.plot(color=custom_colors)
lines = ax.get_lines()
for i, l in enumerate(lines):
xp = custom_colors[i]
rs = l.get_color()
self.assert_(xp == rs)
tmp = sys.stderr
sys.stderr = StringIO()
try:
plt.close('all')
ax2 = df.plot(colors=custom_colors)
lines2 = ax2.get_lines()
for l1, l2 in zip(lines, lines2):
self.assert_(l1.get_color(), l2.get_color())
finally:
sys.stderr = tmp
plt.close('all')
ax = df.plot(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
lines = ax.get_lines()
for i, l in enumerate(lines):
xp = rgba_colors[i]
rs = l.get_color()
self.assert_(xp == rs)
plt.close('all')
ax = df.plot(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
lines = ax.get_lines()
for i, l in enumerate(lines):
xp = rgba_colors[i]
rs = l.get_color()
self.assert_(xp == rs)
# make color a list if plotting one column frame
# handles cases like df.plot(color='DodgerBlue')
plt.close('all')
df.ix[:, [0]].plot(color='DodgerBlue')
def test_default_color_cycle(self):
import matplotlib.pyplot as plt
plt.rcParams['axes.color_cycle'] = list('rgbk')
plt.close('all')
df = DataFrame(np.random.randn(5, 3))
ax = df.plot()
lines = ax.get_lines()
for i, l in enumerate(lines):
xp = plt.rcParams['axes.color_cycle'][i]
rs = l.get_color()
self.assert_(xp == rs)
def test_unordered_ts(self):
df = DataFrame(np.array([3.0, 2.0, 1.0]),
index=[date(2012, 10, 1),
date(2012, 9, 1),
date(2012, 8, 1)],
columns=['test'])
ax = df.plot()
xticks = ax.lines[0].get_xdata()
self.assert_(xticks[0] < xticks[1])
ydata = ax.lines[0].get_ydata()
self.assert_(np.all(ydata == np.array([1.0, 2.0, 3.0])))
def test_all_invalid_plot_data(self):
kinds = 'line', 'bar', 'barh', 'kde', 'density'
df = DataFrame(list('abcd'))
for kind in kinds:
self.assertRaises(TypeError, df.plot, kind=kind)
@slow
def test_partially_invalid_plot_data(self):
kinds = 'line', 'bar', 'barh', 'kde', 'density'
df = DataFrame(np.random.randn(10, 2), dtype=object)
df[np.random.rand(df.shape[0]) > 0.5] = 'a'
for kind in kinds:
self.assertRaises(TypeError, df.plot, kind=kind)
def test_invalid_kind(self):
df = DataFrame(np.random.randn(10, 2))
self.assertRaises(ValueError, df.plot, kind='aasdf')
class TestDataFrameGroupByPlots(unittest.TestCase):
@classmethod
def setUpClass(cls):
try:
import matplotlib as mpl
mpl.use('Agg', warn=False)
except ImportError:
raise nose.SkipTest
def tearDown(self):
import matplotlib.pyplot as plt
plt.close('all')
@slow
def test_boxplot(self):
df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'])
df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])
grouped = df.groupby(by='X')
_check_plot_works(grouped.boxplot)
_check_plot_works(grouped.boxplot, subplots=False)
tuples = lzip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3),
index=MultiIndex.from_tuples(tuples))
grouped = df.groupby(level=1)
_check_plot_works(grouped.boxplot)
_check_plot_works(grouped.boxplot, subplots=False)
grouped = df.unstack(level=1).groupby(level=0, axis=1)
_check_plot_works(grouped.boxplot)
_check_plot_works(grouped.boxplot, subplots=False)
def test_series_plot_color_kwargs(self):
# #1890
import matplotlib.pyplot as plt
plt.close('all')
ax = Series(np.arange(12) + 1).plot(color='green')
line = ax.get_lines()[0]
self.assert_(line.get_color() == 'green')
def test_time_series_plot_color_kwargs(self):
# #1890
import matplotlib.pyplot as plt
plt.close('all')
ax = Series(np.arange(12) + 1, index=date_range(
'1/1/2000', periods=12)).plot(color='green')
line = ax.get_lines()[0]
self.assert_(line.get_color() == 'green')
def test_time_series_plot_color_with_empty_kwargs(self):
import matplotlib as mpl
import matplotlib.pyplot as plt
def_colors = mpl.rcParams['axes.color_cycle']
plt.close('all')
for i in range(3):
ax = Series(np.arange(12) + 1, index=date_range('1/1/2000',
periods=12)).plot()
line_colors = [l.get_color() for l in ax.get_lines()]
self.assertEqual(line_colors, def_colors[:3])
@slow
def test_grouped_hist(self):
import matplotlib.pyplot as plt
df = DataFrame(np.random.randn(500, 2), columns=['A', 'B'])
df['C'] = np.random.randint(0, 4, 500)
axes = plotting.grouped_hist(df.A, by=df.C)
self.assert_(len(axes.ravel()) == 4)
plt.close('all')
axes = df.hist(by=df.C)
self.assert_(axes.ndim == 2)
self.assert_(len(axes.ravel()) == 4)
for ax in axes.ravel():
self.assert_(len(ax.patches) > 0)
plt.close('all')
# make sure kwargs to hist are handled
axes = plotting.grouped_hist(df.A, by=df.C, normed=True,
cumulative=True, bins=4)
# height of last bin (index 5) must be 1.0
for ax in axes.ravel():
height = ax.get_children()[5].get_height()
self.assertAlmostEqual(height, 1.0)
plt.close('all')
axes = plotting.grouped_hist(df.A, by=df.C, log=True)
# scale of y must be 'log'
for ax in axes.ravel():
self.assert_(ax.get_yscale() == 'log')
plt.close('all')
# propagate attr exception from matplotlib.Axes.hist
self.assertRaises(AttributeError, plotting.grouped_hist, df.A,
by=df.C, foo='bar')
@slow
def test_grouped_hist_layout(self):
import matplotlib.pyplot as plt
n = 100
df = DataFrame({'gender': np.array(['Male',
'Female'])[random.randint(2,
size=n)],
'height': random.normal(66, 4, size=n),
'weight': random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
self.assertRaises(ValueError, df.hist, column='weight', by=df.gender,
layout=(1, 1))
self.assertRaises(ValueError, df.hist, column='weight', by=df.gender,
layout=(1,))
self.assertRaises(ValueError, df.hist, column='height', by=df.category,
layout=(1, 3))
self.assertRaises(ValueError, df.hist, column='height', by=df.category,
layout=(2, 1))
self.assertEqual(df.hist(column='height', by=df.gender,
layout=(2, 1)).shape, (2,))
plt.close('all')
self.assertEqual(df.hist(column='height', by=df.category,
layout=(4, 1)).shape, (4,))
plt.close('all')
self.assertEqual(df.hist(column='height', by=df.category,
layout=(4, 2)).shape, (4, 2))
@slow
def test_axis_shared(self):
# GH4089
import matplotlib.pyplot as plt