Skip to content

Commit 6ed5b04

Browse files
committed
autopep8 --ignore=E501 fixes. Marginal improvement.
1 parent b37c2a7 commit 6ed5b04

File tree

1 file changed

+45
-45
lines changed

1 file changed

+45
-45
lines changed

Chapter3_MCMC/IntroMCMC.ipynb

Lines changed: 45 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@
6464
"ax = fig.add_subplot(122, projection='3d')\n",
6565
"ax.plot_surface(X, Y, M, cmap=cm.jet, vmax=1, vmin=-.15)\n",
6666
"ax.view_init(azim=390)\n",
67-
"plt.title(\"Uniform prior landscape; alternate view\")"
67+
"plt.title(\"Uniform prior landscape; alternate view\")\n"
6868
],
6969
"language": "python",
7070
"metadata": {},
@@ -122,7 +122,7 @@
122122
"ax = fig.add_subplot(122, projection='3d')\n",
123123
"ax.plot_surface(X, Y, M, cmap=cm.jet)\n",
124124
"ax.view_init(azim=390)\n",
125-
"plt.title(\"$Exp(3), Exp(10)$ prior landscape; \\nalternate view\")"
125+
"plt.title(\"$Exp(3), Exp(10)$ prior landscape; \\nalternate view\")\n"
126126
],
127127
"language": "python",
128128
"metadata": {},
@@ -158,29 +158,29 @@
158158
"cell_type": "code",
159159
"collapsed": false,
160160
"input": [
161-
"### create the observed data\n",
161+
"# create the observed data\n",
162162
"\n",
163-
"#sample size of data we observe, trying varying this (keep it less than 100 ;)\n",
163+
"# sample size of data we observe, trying varying this (keep it less than 100 ;)\n",
164164
"N = 1\n",
165165
"\n",
166-
"#the true parameters, but of course we do not see these values...\n",
166+
"# the true parameters, but of course we do not see these values...\n",
167167
"lambda_1_true = 1\n",
168168
"lambda_2_true = 3\n",
169169
"\n",
170170
"#...we see the data generated, dependent on the above two values.\n",
171171
"data = np.concatenate([\n",
172172
" stats.poisson.rvs(lambda_1_true, size=(N, 1)),\n",
173173
" stats.poisson.rvs(lambda_2_true, size=(N, 1))\n",
174-
" ], axis=1)\n",
174+
"], axis=1)\n",
175175
"print \"observed (2-dimensional,sample size = %d):\" % N, data\n",
176176
"\n",
177-
"#plotting details.\n",
177+
"# plotting details.\n",
178178
"x = y = np.linspace(.01, 5, 100)\n",
179179
"likelihood_x = np.array([stats.poisson.pmf(data[:, 0], _x)\n",
180180
" for _x in x]).prod(axis=1)\n",
181181
"likelihood_y = np.array([stats.poisson.pmf(data[:, 1], _y)\n",
182182
" for _y in y]).prod(axis=1)\n",
183-
"L = np.dot(likelihood_x[:, None], likelihood_y[None, :])"
183+
"L = np.dot(likelihood_x[:, None], likelihood_y[None, :])\n"
184184
],
185185
"language": "python",
186186
"metadata": {},
@@ -200,7 +200,7 @@
200200
"collapsed": false,
201201
"input": [
202202
"figsize(12.5, 12)\n",
203-
"#matplotlib heavy lifting below, beware!\n",
203+
"# matplotlib heavy lifting below, beware!\n",
204204
"subplot(221)\n",
205205
"uni_x = stats.uniform.pdf(x, loc=0, scale=5)\n",
206206
"uni_y = stats.uniform.pdf(x, loc=0, scale=5)\n",
@@ -244,7 +244,7 @@
244244
"plt.title(\"Landscape warped by %d data observation;\\n Exponential priors on \\\n",
245245
"$p_1, p_2$.\" % N)\n",
246246
"plt.xlim(0, 5)\n",
247-
"plt.ylim(0, 5)"
247+
"plt.ylim(0, 5)\n"
248248
],
249249
"language": "python",
250250
"metadata": {},
@@ -334,12 +334,12 @@
334334
"collapsed": false,
335335
"input": [
336336
"figsize(12.5, 4)\n",
337-
"data = np.loadtxt(\"data/mixture_data.csv\", delimiter=\",\")\n",
337+
"data = np.loadtxt(\"data/mixture_data.csv\", delimiter=\",\")\n",
338338
"\n",
339-
"hist(data, bins=20, color=\"k\", histtype=\"stepfilled\", alpha=0.8)\n",
339+
"hist(data, bins=20, color=\"k\", histtype=\"stepfilled\", alpha=0.8)\n",
340340
"plt.title(\"Histogram of the dataset\")\n",
341341
"plt.ylim([0, None])\n",
342-
"print data[:10], \"...\""
342+
"print data[:10], \"...\"\n"
343343
],
344344
"language": "python",
345345
"metadata": {},
@@ -387,9 +387,9 @@
387387
"\n",
388388
"p = pm.Uniform(\"p\", 0, 1)\n",
389389
"\n",
390-
"assignment = pm.Categorical(\"assignment\", [p, 1-p], size=data.shape[0])\n",
390+
"assignment = pm.Categorical(\"assignment\", [p, 1 - p], size=data.shape[0])\n",
391391
"print \"prior assignment, with p = %.2f:\" % p.value\n",
392-
"print assignment.value[:10], \"...\""
392+
"print assignment.value[:10], \"...\"\n"
393393
],
394394
"language": "python",
395395
"metadata": {},
@@ -426,7 +426,7 @@
426426
"cell_type": "code",
427427
"collapsed": false,
428428
"input": [
429-
"taus = 1.0/pm.Uniform(\"stds\", 0, 100, size=2) ** 2\n",
429+
"taus = 1.0 / pm.Uniform(\"stds\", 0, 100, size=2) ** 2\n",
430430
"centers = pm.Normal(\"centers\", [120, 190], [0.01, 0.01], size=2)\n",
431431
"\n",
432432
"\"\"\"\n",
@@ -447,7 +447,7 @@
447447
"\n",
448448
"print \"Random assignments: \", assignment.value[:4], \"...\"\n",
449449
"print \"Assigned center: \", center_i.value[:4], \"...\"\n",
450-
"print \"Assigned precision: \", tau_i.value[:4], \"...\""
450+
"print \"Assigned precision: \", tau_i.value[:4], \"...\"\n"
451451
],
452452
"language": "python",
453453
"metadata": {},
@@ -468,11 +468,11 @@
468468
"cell_type": "code",
469469
"collapsed": false,
470470
"input": [
471-
"#and to combine it with the observations:\n",
471+
"# and to combine it with the observations:\n",
472472
"observations = pm.Normal(\"obs\", center_i, tau_i, value=data, observed=True)\n",
473473
"\n",
474-
"#below we create a model class\n",
475-
"model = pm.Model([p, assignment, taus, centers])"
474+
"# below we create a model class\n",
475+
"model = pm.Model([p, assignment, taus, centers])\n"
476476
],
477477
"language": "python",
478478
"metadata": {},
@@ -495,7 +495,7 @@
495495
"collapsed": false,
496496
"input": [
497497
"mcmc = pm.MCMC(model)\n",
498-
"mcmc.sample(50000)"
498+
"mcmc.sample(50000)\n"
499499
],
500500
"language": "python",
501501
"metadata": {},
@@ -527,9 +527,9 @@
527527
"lw = 1\n",
528528
"center_trace = mcmc.trace(\"centers\")[:]\n",
529529
"\n",
530-
"#for pretty colors later in the book.\n",
530+
"# for pretty colors later in the book.\n",
531531
"colors = [\"#348ABD\", \"#A60628\"] if center_trace[-1, 0] > center_trace[-1, 1] \\\n",
532-
" else [\"#A60628\", \"#348ABD\"]\n",
532+
" else [\"#A60628\", \"#348ABD\"]\n",
533533
"\n",
534534
"plot(center_trace[:, 0], label=\"trace of center 0\", c=colors[0], lw=lw)\n",
535535
"plot(center_trace[:, 1], label=\"trace of center 1\", c=colors[1], lw=lw)\n",
@@ -551,7 +551,7 @@
551551
" color=\"#467821\", lw=lw)\n",
552552
"plt.xlabel(\"Steps\")\n",
553553
"plt.ylim(0, 1)\n",
554-
"plt.legend()"
554+
"plt.legend()\n"
555555
],
556556
"language": "python",
557557
"metadata": {},
@@ -583,7 +583,7 @@
583583
"cell_type": "code",
584584
"collapsed": false,
585585
"input": [
586-
"mcmc.sample(100000)"
586+
"mcmc.sample(100000)\n"
587587
],
588588
"language": "python",
589589
"metadata": {},
@@ -621,13 +621,13 @@
621621
" lw=lw, alpha=0.4, c=colors[0])\n",
622622
"\n",
623623
"x = np.arange(50000, 150000)\n",
624-
"plot(x, center_trace[:, 0], label=\"new trace of center 0\", lw=lw, c=\"#348ABD\")\n",
625-
"plot(x, center_trace[:, 1], label=\"new trace of center 1\", lw=lw, c=\"#A60628\")\n",
624+
"plot(x, center_trace[:, 0], label=\"new trace of center 0\", lw=lw, c=\"#348ABD\")\n",
625+
"plot(x, center_trace[:, 1], label=\"new trace of center 1\", lw=lw, c=\"#A60628\")\n",
626626
"\n",
627627
"plt.title(\"Traces of unknown center parameters\")\n",
628628
"leg = plt.legend(loc=\"upper right\")\n",
629629
"leg.get_frame().set_alpha(0.8)\n",
630-
"plt.xlabel(\"Steps\")"
630+
"plt.xlabel(\"Steps\")\n"
631631
],
632632
"language": "python",
633633
"metadata": {},
@@ -668,9 +668,9 @@
668668
" plt.title(\"Posterior of standard deviation of cluster %d\" % i)\n",
669669
" plt.hist(std_trace[:, i], color=colors[i], bins=30,\n",
670670
" histtype=\"stepfilled\")\n",
671-
" #plt.autoscale(tight=True)\n",
671+
" # plt.autoscale(tight=True)\n",
672672
"\n",
673-
"plt.tight_layout()"
673+
"plt.tight_layout()\n"
674674
],
675675
"language": "python",
676676
"metadata": {},
@@ -703,7 +703,7 @@
703703
" [\"%.2f\" % s for s in np.sort(data)[::40]])\n",
704704
"plt.ylabel(\"posterior sample\")\n",
705705
"plt.xlabel(\"value of $i$th data point\")\n",
706-
"plt.title(\"Posterior labels of data points\")"
706+
"plt.title(\"Posterior labels of data points\")\n"
707707
],
708708
"language": "python",
709709
"metadata": {},
@@ -728,13 +728,13 @@
728728
"input": [
729729
"cmap = mpl.colors.LinearSegmentedColormap.from_list(\"BMH\", colors)\n",
730730
"assign_trace = mcmc.trace(\"assignment\")[:]\n",
731-
"scatter(data, 1-assign_trace.mean(axis=0), cmap=cmap,\n",
731+
"scatter(data, 1 - assign_trace.mean(axis=0), cmap=cmap,\n",
732732
" c=assign_trace.mean(axis=0), s=50)\n",
733733
"plt.ylim(-0.05, 1.05)\n",
734734
"plt.xlim(35, 300)\n",
735735
"plt.title(\"Probability of data point belonging to cluster 0\")\n",
736736
"plt.ylabel(\"probability\")\n",
737-
"plt.xlabel(\"value of data point\")"
737+
"plt.xlabel(\"value of data point\")\n"
738738
],
739739
"language": "python",
740740
"metadata": {},
@@ -778,7 +778,7 @@
778778
"plt.fill_between(x, y, color=colors[0], alpha=0.3)\n",
779779
"\n",
780780
"plt.legend(loc=\"upper left\")\n",
781-
"plt.title(\"Visualizing Clusters using posterior-mean parameters\")"
781+
"plt.title(\"Visualizing Clusters using posterior-mean parameters\")\n"
782782
],
783783
"language": "python",
784784
"metadata": {},
@@ -817,7 +817,7 @@
817817
"\n",
818818
"plt.plot(ex_mcmc.trace(\"x\")[:])\n",
819819
"plt.plot(ex_mcmc.trace(\"y\")[:])\n",
820-
"plt.title(\"Displaying (extreme) case of dependence between unknowns\")"
820+
"plt.title(\"Displaying (extreme) case of dependence between unknowns\")\n"
821821
],
822822
"language": "python",
823823
"metadata": {},
@@ -891,10 +891,10 @@
891891
"p_trace = mcmc.trace(\"p\")[:]\n",
892892
"x = 175\n",
893893
"\n",
894-
"v = p_trace*norm_pdf(x, loc=center_trace[:, 0], scale=std_trace[:, 0]) > \\\n",
895-
" (1-p_trace)*norm_pdf(x, loc=center_trace[:, 1], scale=std_trace[:, 1])\n",
894+
"v = p_trace * norm_pdf(x, loc=center_trace[:, 0], scale=std_trace[:, 0]) > \\\n",
895+
" (1 - p_trace) * norm_pdf(x, loc=center_trace[:, 1], scale=std_trace[:, 1])\n",
896896
"\n",
897-
"print \"Probability of belonging to cluster 1:\", v.mean()"
897+
"print \"Probability of belonging to cluster 1:\", v.mean()\n"
898898
],
899899
"language": "python",
900900
"metadata": {},
@@ -988,7 +988,7 @@
988988
"plt.plot(y_t, label=\"$y_t$\", lw=3)\n",
989989
"plt.plot(x_t, label=\"$x_t$\", lw=3)\n",
990990
"plt.xlabel(\"time, $t$\")\n",
991-
"plt.legend()"
991+
"plt.legend()\n"
992992
],
993993
"language": "python",
994994
"metadata": {},
@@ -1014,7 +1014,7 @@
10141014
"collapsed": false,
10151015
"input": [
10161016
"def autocorr(x):\n",
1017-
" #from http://tinyurl.com/afz57c4\n",
1017+
" # from http://tinyurl.com/afz57c4\n",
10181018
" result = np.correlate(x, x, mode='full')\n",
10191019
" result = result / np.max(result)\n",
10201020
" return result[result.size / 2:]\n",
@@ -1030,7 +1030,7 @@
10301030
"plt.legend(title=\"Autocorrelation\")\n",
10311031
"plt.ylabel(\"measured correlation \\nbetween $y_t$ and $y_{t-k}$.\")\n",
10321032
"plt.xlabel(\"k (lag)\")\n",
1033-
"plt.title(\"Autocorrelation plot of $y_t$ and $x_t$ for differing $k$ lags.\")"
1033+
"plt.title(\"Autocorrelation plot of $y_t$ and $x_t$ for differing $k$ lags.\")\n"
10341034
],
10351035
"language": "python",
10361036
"metadata": {},
@@ -1087,7 +1087,7 @@
10871087
"plt.ylabel(\"measured correlation \\nbetween $y_t$ and $y_{t-k}$.\")\n",
10881088
"plt.xlabel(\"k (lag)\")\n",
10891089
"plt.title(\"Autocorrelation of $y_t$ (no thinning vs. thinning) \\\n",
1090-
"at differing $k$ lags.\")"
1090+
"at differing $k$ lags.\")\n"
10911091
],
10921092
"language": "python",
10931093
"metadata": {},
@@ -1130,7 +1130,7 @@
11301130
"from pymc.Matplot import plot as mcplot\n",
11311131
"\n",
11321132
"mcmc.sample(25000, 0, 10)\n",
1133-
"mcplot(mcmc.trace(\"centers\", 2), common_scale=False)"
1133+
"mcplot(mcmc.trace(\"centers\", 2), common_scale=False)\n"
11341134
],
11351135
"language": "python",
11361136
"metadata": {},
@@ -1249,7 +1249,7 @@
12491249
"def css_styling():\n",
12501250
" styles = open(\"../styles/custom.css\", \"r\").read()\n",
12511251
" return HTML(styles)\n",
1252-
"css_styling()"
1252+
"css_styling()\n"
12531253
],
12541254
"language": "python",
12551255
"metadata": {},
@@ -1338,4 +1338,4 @@
13381338
"metadata": {}
13391339
}
13401340
]
1341-
}
1341+
}

0 commit comments

Comments
 (0)