forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_asfreq.py
245 lines (193 loc) · 8.57 KB
/
test_asfreq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from datetime import datetime
import numpy as np
import pytest
from pandas._libs.tslibs.offsets import MonthEnd
from pandas import (
DataFrame,
DatetimeIndex,
Series,
date_range,
period_range,
to_datetime,
)
import pandas._testing as tm
from pandas.tseries import offsets
class TestAsFreq:
@pytest.fixture(params=["s", "ms", "us", "ns"])
def unit(self, request):
return request.param
def test_asfreq2(self, frame_or_series):
ts = frame_or_series(
[0.0, 1.0, 2.0],
index=DatetimeIndex(
[
datetime(2009, 10, 30),
datetime(2009, 11, 30),
datetime(2009, 12, 31),
],
freq="BME",
),
)
daily_ts = ts.asfreq("B")
monthly_ts = daily_ts.asfreq("BME")
tm.assert_equal(monthly_ts, ts)
daily_ts = ts.asfreq("B", method="pad")
monthly_ts = daily_ts.asfreq("BME")
tm.assert_equal(monthly_ts, ts)
daily_ts = ts.asfreq(offsets.BDay())
monthly_ts = daily_ts.asfreq(offsets.BMonthEnd())
tm.assert_equal(monthly_ts, ts)
result = ts[:0].asfreq("ME")
assert len(result) == 0
assert result is not ts
if frame_or_series is Series:
daily_ts = ts.asfreq("D", fill_value=-1)
result = daily_ts.value_counts().sort_index()
expected = Series(
[60, 1, 1, 1], index=[-1.0, 2.0, 1.0, 0.0], name="count"
).sort_index()
tm.assert_series_equal(result, expected)
def test_asfreq_datetimeindex_empty(self, frame_or_series):
# GH#14320
index = DatetimeIndex(["2016-09-29 11:00"])
expected = frame_or_series(index=index, dtype=object).asfreq("h")
result = frame_or_series([3], index=index.copy()).asfreq("h")
tm.assert_index_equal(expected.index, result.index)
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_tz_aware_asfreq_smoke(self, tz, frame_or_series):
dr = date_range("2011-12-01", "2012-07-20", freq="D", tz=tz)
obj = frame_or_series(
np.random.default_rng(2).standard_normal(len(dr)), index=dr
)
# it works!
obj.asfreq("min")
def test_asfreq_normalize(self, frame_or_series):
rng = date_range("1/1/2000 09:30", periods=20)
norm = date_range("1/1/2000", periods=20)
vals = np.random.default_rng(2).standard_normal((20, 3))
obj = DataFrame(vals, index=rng)
expected = DataFrame(vals, index=norm)
if frame_or_series is Series:
obj = obj[0]
expected = expected[0]
result = obj.asfreq("D", normalize=True)
tm.assert_equal(result, expected)
def test_asfreq_keep_index_name(self, frame_or_series):
# GH#9854
index_name = "bar"
index = date_range("20130101", periods=20, name=index_name)
obj = DataFrame(list(range(20)), columns=["foo"], index=index)
obj = tm.get_obj(obj, frame_or_series)
assert index_name == obj.index.name
assert index_name == obj.asfreq("10D").index.name
def test_asfreq_ts(self, frame_or_series):
index = period_range(freq="Y", start="1/1/2001", end="12/31/2010")
obj = DataFrame(
np.random.default_rng(2).standard_normal((len(index), 3)), index=index
)
obj = tm.get_obj(obj, frame_or_series)
result = obj.asfreq("D", how="end")
exp_index = index.asfreq("D", how="end")
assert len(result) == len(obj)
tm.assert_index_equal(result.index, exp_index)
result = obj.asfreq("D", how="start")
exp_index = index.asfreq("D", how="start")
assert len(result) == len(obj)
tm.assert_index_equal(result.index, exp_index)
def test_asfreq_resample_set_correct_freq(self, frame_or_series):
# GH#5613
# we test if .asfreq() and .resample() set the correct value for .freq
dti = to_datetime(["2012-01-01", "2012-01-02", "2012-01-03"])
obj = DataFrame({"col": [1, 2, 3]}, index=dti)
obj = tm.get_obj(obj, frame_or_series)
# testing the settings before calling .asfreq() and .resample()
assert obj.index.freq is None
assert obj.index.inferred_freq == "D"
# does .asfreq() set .freq correctly?
assert obj.asfreq("D").index.freq == "D"
# does .resample() set .freq correctly?
assert obj.resample("D").asfreq().index.freq == "D"
def test_asfreq_empty(self, datetime_frame):
# test does not blow up on length-0 DataFrame
zero_length = datetime_frame.reindex([])
result = zero_length.asfreq("BME")
assert result is not zero_length
def test_asfreq(self, datetime_frame):
offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd())
rule_monthly = datetime_frame.asfreq("BME")
tm.assert_frame_equal(offset_monthly, rule_monthly)
rule_monthly.asfreq("B", method="pad")
# TODO: actually check that this worked.
# don't forget!
rule_monthly.asfreq("B", method="pad")
def test_asfreq_datetimeindex(self):
df = DataFrame(
{"A": [1, 2, 3]},
index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
)
df = df.asfreq("B")
assert isinstance(df.index, DatetimeIndex)
ts = df["A"].asfreq("B")
assert isinstance(ts.index, DatetimeIndex)
def test_asfreq_fillvalue(self):
# test for fill value during upsampling, related to issue 3715
# setup
rng = date_range("1/1/2016", periods=10, freq="2s")
# Explicit cast to 'float' to avoid implicit cast when setting None
ts = Series(np.arange(len(rng)), index=rng, dtype="float")
df = DataFrame({"one": ts})
# insert pre-existing missing value
df.loc["2016-01-01 00:00:08", "one"] = None
actual_df = df.asfreq(freq="1s", fill_value=9.0)
expected_df = df.asfreq(freq="1s").fillna(9.0)
expected_df.loc["2016-01-01 00:00:08", "one"] = None
tm.assert_frame_equal(expected_df, actual_df)
expected_series = ts.asfreq(freq="1s").fillna(9.0)
actual_series = ts.asfreq(freq="1s", fill_value=9.0)
tm.assert_series_equal(expected_series, actual_series)
def test_asfreq_with_date_object_index(self, frame_or_series):
rng = date_range("1/1/2000", periods=20)
ts = frame_or_series(np.random.default_rng(2).standard_normal(20), index=rng)
ts2 = ts.copy()
ts2.index = [x.date() for x in ts2.index]
result = ts2.asfreq("4h", method="ffill")
expected = ts.asfreq("4h", method="ffill")
tm.assert_equal(result, expected)
def test_asfreq_with_unsorted_index(self, frame_or_series):
# GH#39805
# Test that rows are not dropped when the datetime index is out of order
index = to_datetime(["2021-01-04", "2021-01-02", "2021-01-03", "2021-01-01"])
result = frame_or_series(range(4), index=index)
expected = result.reindex(sorted(index))
expected.index = expected.index._with_freq("infer")
result = result.asfreq("D")
tm.assert_equal(result, expected)
def test_asfreq_after_normalize(self, unit):
# https://github.com/pandas-dev/pandas/issues/50727
result = DatetimeIndex(
date_range("2000", periods=2).as_unit(unit).normalize(), freq="D"
)
expected = DatetimeIndex(["2000-01-01", "2000-01-02"], freq="D").as_unit(unit)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"freq, freq_half",
[
("2ME", "ME"),
(MonthEnd(2), MonthEnd(1)),
],
)
def test_asfreq_2ME(self, freq, freq_half):
index = date_range("1/1/2000", periods=6, freq=freq_half)
df = DataFrame({"s": Series([0.0, 1.0, 2.0, 3.0, 4.0, 5.0], index=index)})
expected = df.asfreq(freq=freq)
index = date_range("1/1/2000", periods=3, freq=freq)
result = DataFrame({"s": Series([0.0, 2.0, 4.0], index=index)})
tm.assert_frame_equal(result, expected)
def test_asfreq_frequency_M_deprecated(self):
depr_msg = "'M' will be deprecated, please use 'ME' instead."
index = date_range("1/1/2000", periods=4, freq="ME")
df = DataFrame({"s": Series([0.0, 1.0, 2.0, 3.0], index=index)})
expected = df.asfreq(freq="5ME")
with tm.assert_produces_warning(UserWarning, match=depr_msg):
result = df.asfreq(freq="5M")
tm.assert_frame_equal(result, expected)