forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjoin_merge.py
565 lines (458 loc) · 17 KB
/
join_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import string
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
array,
concat,
date_range,
merge,
merge_asof,
)
from .pandas_vb_common import tm
try:
from pandas import merge_ordered
except ImportError:
from pandas import ordered_merge as merge_ordered
class Concat:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
N = 1000
s = Series(N, index=tm.makeStringIndex(N))
self.series = [s[i:-i] for i in range(1, 10)] * 50
self.small_frames = [DataFrame(np.random.randn(5, 4))] * 1000
df = DataFrame(
{"A": range(N)}, index=date_range("20130101", periods=N, freq="s")
)
self.empty_left = [DataFrame(), df]
self.empty_right = [df, DataFrame()]
self.mixed_ndims = [df, df.head(N // 2)]
def time_concat_series(self, axis):
concat(self.series, axis=axis, sort=False)
def time_concat_small_frames(self, axis):
concat(self.small_frames, axis=axis)
def time_concat_empty_right(self, axis):
concat(self.empty_right, axis=axis)
def time_concat_empty_left(self, axis):
concat(self.empty_left, axis=axis)
def time_concat_mixed_ndims(self, axis):
concat(self.mixed_ndims, axis=axis)
class ConcatDataFrames:
params = ([0, 1], [True, False])
param_names = ["axis", "ignore_index"]
def setup(self, axis, ignore_index):
frame_c = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="C"))
self.frame_c = [frame_c] * 20
frame_f = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="F"))
self.frame_f = [frame_f] * 20
def time_c_ordered(self, axis, ignore_index):
concat(self.frame_c, axis=axis, ignore_index=ignore_index)
def time_f_ordered(self, axis, ignore_index):
concat(self.frame_f, axis=axis, ignore_index=ignore_index)
class ConcatIndexDtype:
params = (
[
"datetime64[ns]",
"int64",
"Int64",
"int64[pyarrow]",
"string[python]",
"string[pyarrow]",
],
["monotonic", "non_monotonic", "has_na"],
[0, 1],
[True, False],
)
param_names = ["dtype", "structure", "axis", "sort"]
def setup(self, dtype, structure, axis, sort):
N = 10_000
if dtype == "datetime64[ns]":
vals = date_range("1970-01-01", periods=N)
elif dtype in ("int64", "Int64", "int64[pyarrow]"):
vals = np.arange(N, dtype=np.int64)
elif dtype in ("string[python]", "string[pyarrow]"):
vals = tm.makeStringIndex(N)
else:
raise NotImplementedError
idx = Index(vals, dtype=dtype)
if structure == "monotonic":
idx = idx.sort_values()
elif structure == "non_monotonic":
idx = idx[::-1]
elif structure == "has_na":
if not idx._can_hold_na:
raise NotImplementedError
idx = Index([None], dtype=dtype).append(idx)
else:
raise NotImplementedError
self.series = [Series(i, idx[:-i]) for i in range(1, 6)]
def time_concat_series(self, dtype, structure, axis, sort):
concat(self.series, axis=axis, sort=sort)
class Join:
params = [True, False]
param_names = ["sort"]
def setup(self, sort):
level1 = tm.makeStringIndex(10).values
level2 = tm.makeStringIndex(1000).values
codes1 = np.arange(10).repeat(1000)
codes2 = np.tile(np.arange(1000), 10)
index2 = MultiIndex(levels=[level1, level2], codes=[codes1, codes2])
self.df_multi = DataFrame(
np.random.randn(len(index2), 4), index=index2, columns=["A", "B", "C", "D"]
)
self.key1 = np.tile(level1.take(codes1), 10)
self.key2 = np.tile(level2.take(codes2), 10)
self.df = DataFrame(
{
"data1": np.random.randn(100000),
"data2": np.random.randn(100000),
"key1": self.key1,
"key2": self.key2,
}
)
self.df_key1 = DataFrame(
np.random.randn(len(level1), 4), index=level1, columns=["A", "B", "C", "D"]
)
self.df_key2 = DataFrame(
np.random.randn(len(level2), 4), index=level2, columns=["A", "B", "C", "D"]
)
shuf = np.arange(100000)
np.random.shuffle(shuf)
self.df_shuf = self.df.reindex(self.df.index[shuf])
def time_join_dataframe_index_multi(self, sort):
self.df.join(self.df_multi, on=["key1", "key2"], sort=sort)
def time_join_dataframe_index_single_key_bigger(self, sort):
self.df.join(self.df_key2, on="key2", sort=sort)
def time_join_dataframe_index_single_key_small(self, sort):
self.df.join(self.df_key1, on="key1", sort=sort)
def time_join_dataframe_index_shuffle_key_bigger_sort(self, sort):
self.df_shuf.join(self.df_key2, on="key2", sort=sort)
def time_join_dataframes_cross(self, sort):
self.df.loc[:2000].join(self.df_key1, how="cross", sort=sort)
class JoinIndex:
def setup(self):
N = 5000
self.left = DataFrame(
np.random.randint(1, N / 50, (N, 2)), columns=["jim", "joe"]
)
self.right = DataFrame(
np.random.randint(1, N / 50, (N, 2)), columns=["jolie", "jolia"]
).set_index("jolie")
def time_left_outer_join_index(self):
self.left.join(self.right, on="jim")
class JoinMultiindexSubset:
def setup(self):
N = 100_000
mi1 = MultiIndex.from_arrays([np.arange(N)] * 4, names=["a", "b", "c", "d"])
mi2 = MultiIndex.from_arrays([np.arange(N)] * 2, names=["a", "b"])
self.left = DataFrame({"col1": 1}, index=mi1)
self.right = DataFrame({"col2": 2}, index=mi2)
def time_join_multiindex_subset(self):
self.left.join(self.right)
class JoinEmpty:
def setup(self):
N = 100_000
self.df = DataFrame({"A": np.arange(N)})
self.df_empty = DataFrame(columns=["B", "C"], dtype="int64")
def time_inner_join_left_empty(self):
self.df_empty.join(self.df, how="inner")
def time_inner_join_right_empty(self):
self.df.join(self.df_empty, how="inner")
class JoinNonUnique:
# outer join of non-unique
# GH 6329
def setup(self):
date_index = date_range("01-Jan-2013", "23-Jan-2013", freq="min")
daily_dates = date_index.to_period("D").to_timestamp("S", "S")
self.fracofday = date_index.values - daily_dates.values
self.fracofday = self.fracofday.astype("timedelta64[ns]")
self.fracofday = self.fracofday.astype(np.float64) / 86_400_000_000_000
self.fracofday = Series(self.fracofday, daily_dates)
index = date_range(date_index.min(), date_index.max(), freq="D")
self.temp = Series(1.0, index)[self.fracofday.index]
def time_join_non_unique_equal(self):
self.fracofday * self.temp
class Merge:
params = [True, False]
param_names = ["sort"]
def setup(self, sort):
N = 10000
indices = tm.makeStringIndex(N).values
indices2 = tm.makeStringIndex(N).values
key = np.tile(indices[:8000], 10)
key2 = np.tile(indices2[:8000], 10)
self.left = DataFrame(
{"key": key, "key2": key2, "value": np.random.randn(80000)}
)
self.right = DataFrame(
{
"key": indices[2000:],
"key2": indices2[2000:],
"value2": np.random.randn(8000),
}
)
self.df = DataFrame(
{
"key1": np.tile(np.arange(500).repeat(10), 2),
"key2": np.tile(np.arange(250).repeat(10), 4),
"value": np.random.randn(10000),
}
)
self.df2 = DataFrame({"key1": np.arange(500), "value2": np.random.randn(500)})
self.df3 = self.df[:5000]
def time_merge_2intkey(self, sort):
merge(self.left, self.right, sort=sort)
def time_merge_dataframe_integer_2key(self, sort):
merge(self.df, self.df3, sort=sort)
def time_merge_dataframe_integer_key(self, sort):
merge(self.df, self.df2, on="key1", sort=sort)
def time_merge_dataframe_empty_right(self, sort):
merge(self.left, self.right.iloc[:0], sort=sort)
def time_merge_dataframe_empty_left(self, sort):
merge(self.left.iloc[:0], self.right, sort=sort)
def time_merge_dataframes_cross(self, sort):
merge(self.left.loc[:2000], self.right.loc[:2000], how="cross", sort=sort)
class MergeEA:
params = [
"Int64",
"Int32",
"Int16",
"UInt64",
"UInt32",
"UInt16",
"Float64",
"Float32",
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10_000
indices = np.arange(1, N)
key = np.tile(indices[:8000], 10)
self.left = DataFrame(
{"key": Series(key, dtype=dtype), "value": np.random.randn(80000)}
)
self.right = DataFrame(
{
"key": Series(indices[2000:], dtype=dtype),
"value2": np.random.randn(7999),
}
)
def time_merge(self, dtype):
merge(self.left, self.right)
class I8Merge:
params = ["inner", "outer", "left", "right"]
param_names = ["how"]
def setup(self, how):
low, high, n = -1000, 1000, 10**6
self.left = DataFrame(
np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG")
)
self.left["left"] = self.left.sum(axis=1)
self.right = self.left.sample(frac=1).rename({"left": "right"}, axis=1)
self.right = self.right.reset_index(drop=True)
self.right["right"] *= -1
def time_i8merge(self, how):
merge(self.left, self.right, how=how)
class MergeDatetime:
params = [
[
("ns", "ns"),
("ms", "ms"),
("ns", "ms"),
],
[None, "Europe/Brussels"],
]
param_names = ["units", "tz"]
def setup(self, units, tz):
unit_left, unit_right = units
N = 10_000
keys = Series(date_range("2012-01-01", freq="min", periods=N, tz=tz))
self.left = DataFrame(
{
"key": keys.sample(N * 10, replace=True).dt.as_unit(unit_left),
"value1": np.random.randn(N * 10),
}
)
self.right = DataFrame(
{
"key": keys[:8000].dt.as_unit(unit_right),
"value2": np.random.randn(8000),
}
)
def time_merge(self, units, tz):
merge(self.left, self.right)
class MergeCategoricals:
def setup(self):
self.left_object = DataFrame(
{
"X": np.random.choice(range(0, 10), size=(10000,)),
"Y": np.random.choice(["one", "two", "three"], size=(10000,)),
}
)
self.right_object = DataFrame(
{
"X": np.random.choice(range(0, 10), size=(10000,)),
"Z": np.random.choice(["jjj", "kkk", "sss"], size=(10000,)),
}
)
self.left_cat = self.left_object.assign(
Y=self.left_object["Y"].astype("category")
)
self.right_cat = self.right_object.assign(
Z=self.right_object["Z"].astype("category")
)
self.left_cat_col = self.left_object.astype({"X": "category"})
self.right_cat_col = self.right_object.astype({"X": "category"})
self.left_cat_idx = self.left_cat_col.set_index("X")
self.right_cat_idx = self.right_cat_col.set_index("X")
def time_merge_object(self):
merge(self.left_object, self.right_object, on="X")
def time_merge_cat(self):
merge(self.left_cat, self.right_cat, on="X")
def time_merge_on_cat_col(self):
merge(self.left_cat_col, self.right_cat_col, on="X")
def time_merge_on_cat_idx(self):
merge(self.left_cat_idx, self.right_cat_idx, on="X")
class MergeOrdered:
def setup(self):
groups = tm.makeStringIndex(10).values
self.left = DataFrame(
{
"group": groups.repeat(5000),
"key": np.tile(np.arange(0, 10000, 2), 10),
"lvalue": np.random.randn(50000),
}
)
self.right = DataFrame(
{"key": np.arange(10000), "rvalue": np.random.randn(10000)}
)
def time_merge_ordered(self):
merge_ordered(self.left, self.right, on="key", left_by="group")
class MergeAsof:
params = [["backward", "forward", "nearest"], [None, 5]]
param_names = ["direction", "tolerance"]
def setup(self, direction, tolerance):
one_count = 200000
two_count = 1000000
df1 = DataFrame(
{
"time": np.random.randint(0, one_count / 20, one_count),
"key": np.random.choice(list(string.ascii_uppercase), one_count),
"key2": np.random.randint(0, 25, one_count),
"value1": np.random.randn(one_count),
}
)
df2 = DataFrame(
{
"time": np.random.randint(0, two_count / 20, two_count),
"key": np.random.choice(list(string.ascii_uppercase), two_count),
"key2": np.random.randint(0, 25, two_count),
"value2": np.random.randn(two_count),
}
)
df1 = df1.sort_values("time")
df2 = df2.sort_values("time")
df1["time32"] = np.int32(df1.time)
df2["time32"] = np.int32(df2.time)
df1["timeu64"] = np.uint64(df1.time)
df2["timeu64"] = np.uint64(df2.time)
self.df1a = df1[["time", "value1"]]
self.df2a = df2[["time", "value2"]]
self.df1b = df1[["time", "key", "value1"]]
self.df2b = df2[["time", "key", "value2"]]
self.df1c = df1[["time", "key2", "value1"]]
self.df2c = df2[["time", "key2", "value2"]]
self.df1d = df1[["time32", "value1"]]
self.df2d = df2[["time32", "value2"]]
self.df1e = df1[["time", "key", "key2", "value1"]]
self.df2e = df2[["time", "key", "key2", "value2"]]
self.df1f = df1[["timeu64", "value1"]]
self.df2f = df2[["timeu64", "value2"]]
def time_on_int(self, direction, tolerance):
merge_asof(
self.df1a, self.df2a, on="time", direction=direction, tolerance=tolerance
)
def time_on_int32(self, direction, tolerance):
merge_asof(
self.df1d, self.df2d, on="time32", direction=direction, tolerance=tolerance
)
def time_on_uint64(self, direction, tolerance):
merge_asof(
self.df1f, self.df2f, on="timeu64", direction=direction, tolerance=tolerance
)
def time_by_object(self, direction, tolerance):
merge_asof(
self.df1b,
self.df2b,
on="time",
by="key",
direction=direction,
tolerance=tolerance,
)
def time_by_int(self, direction, tolerance):
merge_asof(
self.df1c,
self.df2c,
on="time",
by="key2",
direction=direction,
tolerance=tolerance,
)
def time_multiby(self, direction, tolerance):
merge_asof(
self.df1e,
self.df2e,
on="time",
by=["key", "key2"],
direction=direction,
tolerance=tolerance,
)
class MergeMultiIndex:
params = [
[
("int64", "int64"),
("datetime64[ns]", "int64"),
("Int64", "Int64"),
],
["left", "right", "inner", "outer"],
]
param_names = ["dtypes", "how"]
def setup(self, dtypes, how):
n = 100_000
offset = 50_000
mi1 = MultiIndex.from_arrays(
[
array(np.arange(n), dtype=dtypes[0]),
array(np.arange(n), dtype=dtypes[1]),
]
)
mi2 = MultiIndex.from_arrays(
[
array(np.arange(offset, n + offset), dtype=dtypes[0]),
array(np.arange(offset, n + offset), dtype=dtypes[1]),
]
)
self.df1 = DataFrame({"col1": 1}, index=mi1)
self.df2 = DataFrame({"col2": 2}, index=mi2)
def time_merge_sorted_multiindex(self, dtypes, how):
# copy to avoid MultiIndex._values caching
df1 = self.df1.copy()
df2 = self.df2.copy()
merge(df1, df2, how=how, left_index=True, right_index=True)
class Align:
def setup(self):
size = 5 * 10**5
rng = np.arange(0, 10**13, 10**7)
stamps = np.datetime64("now").view("i8") + rng
idx1 = np.sort(np.random.choice(stamps, size, replace=False))
idx2 = np.sort(np.random.choice(stamps, size, replace=False))
self.ts1 = Series(np.random.randn(size), idx1)
self.ts2 = Series(np.random.randn(size), idx2)
def time_series_align_int64_index(self):
self.ts1 + self.ts2
def time_series_align_left_monotonic(self):
self.ts1.align(self.ts2, join="left")
from .pandas_vb_common import setup # noqa: F401 isort:skip