forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrequencies.py
602 lines (491 loc) · 17.3 KB
/
frequencies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas._libs import lib
from pandas._libs.algos import unique_deltas
from pandas._libs.tslibs import (
Timestamp,
get_unit_from_dtype,
periods_per_day,
tz_convert_from_utc,
)
from pandas._libs.tslibs.ccalendar import (
DAYS,
MONTH_ALIASES,
MONTH_NUMBERS,
MONTHS,
int_to_weekday,
)
from pandas._libs.tslibs.dtypes import (
OFFSET_TO_PERIOD_FREQSTR,
freq_to_period_freqstr,
)
from pandas._libs.tslibs.fields import (
build_field_sarray,
month_position_check,
)
from pandas._libs.tslibs.offsets import (
DateOffset,
Day,
to_offset,
)
from pandas._libs.tslibs.parsing import get_rule_month
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import is_numeric_dtype
from pandas.core.dtypes.dtypes import (
DatetimeTZDtype,
PeriodDtype,
)
from pandas.core.dtypes.generic import (
ABCIndex,
ABCSeries,
)
from pandas.core.algorithms import unique
if TYPE_CHECKING:
from pandas._typing import npt
from pandas import (
DatetimeIndex,
Series,
TimedeltaIndex,
)
from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
# --------------------------------------------------------------------
# Offset related functions
_need_suffix = ["QS", "BQE", "BQS", "YS", "BYE", "BYS"]
for _prefix in _need_suffix:
for _m in MONTHS:
key = f"{_prefix}-{_m}"
OFFSET_TO_PERIOD_FREQSTR[key] = OFFSET_TO_PERIOD_FREQSTR[_prefix]
for _prefix in ["Y", "Q"]:
for _m in MONTHS:
_alias = f"{_prefix}-{_m}"
OFFSET_TO_PERIOD_FREQSTR[_alias] = _alias
for _d in DAYS:
OFFSET_TO_PERIOD_FREQSTR[f"W-{_d}"] = f"W-{_d}"
def get_period_alias(offset_str: str) -> str | None:
"""
Alias to closest period strings BQ->Q etc.
"""
return OFFSET_TO_PERIOD_FREQSTR.get(offset_str, None)
# ---------------------------------------------------------------------
# Period codes
def infer_freq(
index: DatetimeIndex | TimedeltaIndex | Series | DatetimeLikeArrayMixin,
) -> str | None:
"""
Infer the most likely frequency given the input index.
Parameters
----------
index : DatetimeIndex, TimedeltaIndex, Series or array-like
If passed a Series will use the values of the series (NOT THE INDEX).
Returns
-------
str or None
None if no discernible frequency.
Raises
------
TypeError
If the index is not datetime-like.
ValueError
If there are fewer than three values.
Examples
--------
>>> idx = pd.date_range(start='2020/12/01', end='2020/12/30', periods=30)
>>> pd.infer_freq(idx)
'D'
"""
from pandas.core.api import DatetimeIndex
if isinstance(index, ABCSeries):
values = index._values
if not (
lib.is_np_dtype(values.dtype, "mM")
or isinstance(values.dtype, DatetimeTZDtype)
or values.dtype == object
):
raise TypeError(
"cannot infer freq from a non-convertible dtype "
f"on a Series of {index.dtype}"
)
index = values
inferer: _FrequencyInferer
if not hasattr(index, "dtype"):
pass
elif isinstance(index.dtype, PeriodDtype):
raise TypeError(
"PeriodIndex given. Check the `freq` attribute "
"instead of using infer_freq."
)
elif lib.is_np_dtype(index.dtype, "m"):
# Allow TimedeltaIndex and TimedeltaArray
inferer = _TimedeltaFrequencyInferer(index)
return inferer.get_freq()
elif is_numeric_dtype(index.dtype):
raise TypeError(
f"cannot infer freq from a non-convertible index of dtype {index.dtype}"
)
if not isinstance(index, DatetimeIndex):
index = DatetimeIndex(index)
inferer = _FrequencyInferer(index)
return inferer.get_freq()
class _FrequencyInferer:
"""
Not sure if I can avoid the state machine here
"""
def __init__(self, index) -> None:
self.index = index
self.i8values = index.asi8
# For get_unit_from_dtype we need the dtype to the underlying ndarray,
# which for tz-aware is not the same as index.dtype
if isinstance(index, ABCIndex):
# error: Item "ndarray[Any, Any]" of "Union[ExtensionArray,
# ndarray[Any, Any]]" has no attribute "_ndarray"
self._creso = get_unit_from_dtype(
index._data._ndarray.dtype # type: ignore[union-attr]
)
else:
# otherwise we have DTA/TDA
self._creso = get_unit_from_dtype(index._ndarray.dtype)
# This moves the values, which are implicitly in UTC, to the
# the timezone so they are in local time
if hasattr(index, "tz"):
if index.tz is not None:
self.i8values = tz_convert_from_utc(
self.i8values, index.tz, reso=self._creso
)
if len(index) < 3:
raise ValueError("Need at least 3 dates to infer frequency")
self.is_monotonic = (
self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing
)
@cache_readonly
def deltas(self) -> npt.NDArray[np.int64]:
return unique_deltas(self.i8values)
@cache_readonly
def deltas_asi8(self) -> npt.NDArray[np.int64]:
# NB: we cannot use self.i8values here because we may have converted
# the tz in __init__
return unique_deltas(self.index.asi8)
@cache_readonly
def is_unique(self) -> bool:
return len(self.deltas) == 1
@cache_readonly
def is_unique_asi8(self) -> bool:
return len(self.deltas_asi8) == 1
def get_freq(self) -> str | None:
"""
Find the appropriate frequency string to describe the inferred
frequency of self.i8values
Returns
-------
str or None
"""
if not self.is_monotonic or not self.index._is_unique:
return None
delta = self.deltas[0]
ppd = periods_per_day(self._creso)
if delta and _is_multiple(delta, ppd):
return self._infer_daily_rule()
# Business hourly, maybe. 17: one day / 65: one weekend
if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]):
return "bh"
# Possibly intraday frequency. Here we use the
# original .asi8 values as the modified values
# will not work around DST transitions. See #8772
if not self.is_unique_asi8:
return None
delta = self.deltas_asi8[0]
pph = ppd // 24
ppm = pph // 60
pps = ppm // 60
if _is_multiple(delta, pph):
# Hours
return _maybe_add_count("h", delta / pph)
elif _is_multiple(delta, ppm):
# Minutes
return _maybe_add_count("min", delta / ppm)
elif _is_multiple(delta, pps):
# Seconds
return _maybe_add_count("s", delta / pps)
elif _is_multiple(delta, (pps // 1000)):
# Milliseconds
return _maybe_add_count("ms", delta / (pps // 1000))
elif _is_multiple(delta, (pps // 1_000_000)):
# Microseconds
return _maybe_add_count("us", delta / (pps // 1_000_000))
else:
# Nanoseconds
return _maybe_add_count("ns", delta)
@cache_readonly
def day_deltas(self) -> list[int]:
ppd = periods_per_day(self._creso)
return [x / ppd for x in self.deltas]
@cache_readonly
def hour_deltas(self) -> list[int]:
pph = periods_per_day(self._creso) // 24
return [x / pph for x in self.deltas]
@cache_readonly
def fields(self) -> np.ndarray: # structured array of fields
return build_field_sarray(self.i8values, reso=self._creso)
@cache_readonly
def rep_stamp(self) -> Timestamp:
return Timestamp(self.i8values[0], unit=self.index.unit)
def month_position_check(self) -> str | None:
return month_position_check(self.fields, self.index.dayofweek)
@cache_readonly
def mdiffs(self) -> npt.NDArray[np.int64]:
nmonths = self.fields["Y"] * 12 + self.fields["M"]
return unique_deltas(nmonths.astype("i8"))
@cache_readonly
def ydiffs(self) -> npt.NDArray[np.int64]:
return unique_deltas(self.fields["Y"].astype("i8"))
def _infer_daily_rule(self) -> str | None:
annual_rule = self._get_annual_rule()
if annual_rule:
nyears = self.ydiffs[0]
month = MONTH_ALIASES[self.rep_stamp.month]
alias = f"{annual_rule}-{month}"
return _maybe_add_count(alias, nyears)
quarterly_rule = self._get_quarterly_rule()
if quarterly_rule:
nquarters = self.mdiffs[0] / 3
mod_dict = {0: 12, 2: 11, 1: 10}
month = MONTH_ALIASES[mod_dict[self.rep_stamp.month % 3]]
alias = f"{quarterly_rule}-{month}"
return _maybe_add_count(alias, nquarters)
monthly_rule = self._get_monthly_rule()
if monthly_rule:
return _maybe_add_count(monthly_rule, self.mdiffs[0])
if self.is_unique:
return self._get_daily_rule()
if self._is_business_daily():
return "B"
wom_rule = self._get_wom_rule()
if wom_rule:
return wom_rule
return None
def _get_daily_rule(self) -> str | None:
ppd = periods_per_day(self._creso)
days = self.deltas[0] / ppd
if days % 7 == 0:
# Weekly
wd = int_to_weekday[self.rep_stamp.weekday()]
alias = f"W-{wd}"
return _maybe_add_count(alias, days / 7)
else:
return _maybe_add_count("D", days)
def _get_annual_rule(self) -> str | None:
if len(self.ydiffs) > 1:
return None
if len(unique(self.fields["M"])) > 1:
return None
pos_check = self.month_position_check()
if pos_check is None:
return None
else:
return {"cs": "YS", "bs": "BYS", "ce": "YE", "be": "BYE"}.get(pos_check)
def _get_quarterly_rule(self) -> str | None:
if len(self.mdiffs) > 1:
return None
if not self.mdiffs[0] % 3 == 0:
return None
pos_check = self.month_position_check()
if pos_check is None:
return None
else:
return {"cs": "QS", "bs": "BQS", "ce": "QE", "be": "BQE"}.get(pos_check)
def _get_monthly_rule(self) -> str | None:
if len(self.mdiffs) > 1:
return None
pos_check = self.month_position_check()
if pos_check is None:
return None
else:
return {"cs": "MS", "bs": "BMS", "ce": "ME", "be": "BME"}.get(pos_check)
def _is_business_daily(self) -> bool:
# quick check: cannot be business daily
if self.day_deltas != [1, 3]:
return False
# probably business daily, but need to confirm
first_weekday = self.index[0].weekday()
shifts = np.diff(self.i8values)
ppd = periods_per_day(self._creso)
shifts = np.floor_divide(shifts, ppd)
weekdays = np.mod(first_weekday + np.cumsum(shifts), 7)
return bool(
np.all(
((weekdays == 0) & (shifts == 3))
| ((weekdays > 0) & (weekdays <= 4) & (shifts == 1))
)
)
def _get_wom_rule(self) -> str | None:
weekdays = unique(self.index.weekday)
if len(weekdays) > 1:
return None
week_of_months = unique((self.index.day - 1) // 7)
# Only attempt to infer up to WOM-4. See #9425
week_of_months = week_of_months[week_of_months < 4]
if len(week_of_months) == 0 or len(week_of_months) > 1:
return None
# get which week
week = week_of_months[0] + 1
wd = int_to_weekday[weekdays[0]]
return f"WOM-{week}{wd}"
class _TimedeltaFrequencyInferer(_FrequencyInferer):
def _infer_daily_rule(self):
if self.is_unique:
return self._get_daily_rule()
def _is_multiple(us, mult: int) -> bool:
return us % mult == 0
def _maybe_add_count(base: str, count: float) -> str:
if count != 1:
assert count == int(count)
count = int(count)
return f"{count}{base}"
else:
return base
# ----------------------------------------------------------------------
# Frequency comparison
def is_subperiod(source, target) -> bool:
"""
Returns True if downsampling is possible between source and target
frequencies
Parameters
----------
source : str or DateOffset
Frequency converting from
target : str or DateOffset
Frequency converting to
Returns
-------
bool
"""
if target is None or source is None:
return False
source = _maybe_coerce_freq(source)
target = _maybe_coerce_freq(target)
if _is_annual(target):
if _is_quarterly(source):
return _quarter_months_conform(
get_rule_month(source), get_rule_month(target)
)
return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
elif _is_quarterly(target):
return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
elif _is_monthly(target):
return source in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif _is_weekly(target):
return source in {target, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif target == "B":
return source in {"B", "h", "min", "s", "ms", "us", "ns"}
elif target == "C":
return source in {"C", "h", "min", "s", "ms", "us", "ns"}
elif target == "D":
return source in {"D", "h", "min", "s", "ms", "us", "ns"}
elif target == "h":
return source in {"h", "min", "s", "ms", "us", "ns"}
elif target == "min":
return source in {"min", "s", "ms", "us", "ns"}
elif target == "s":
return source in {"s", "ms", "us", "ns"}
elif target == "ms":
return source in {"ms", "us", "ns"}
elif target == "us":
return source in {"us", "ns"}
elif target == "ns":
return source in {"ns"}
else:
return False
def is_superperiod(source, target) -> bool:
"""
Returns True if upsampling is possible between source and target
frequencies
Parameters
----------
source : str or DateOffset
Frequency converting from
target : str or DateOffset
Frequency converting to
Returns
-------
bool
"""
if target is None or source is None:
return False
source = _maybe_coerce_freq(source)
target = _maybe_coerce_freq(target)
if _is_annual(source):
if _is_annual(target):
return get_rule_month(source) == get_rule_month(target)
if _is_quarterly(target):
smonth = get_rule_month(source)
tmonth = get_rule_month(target)
return _quarter_months_conform(smonth, tmonth)
return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
elif _is_quarterly(source):
return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
elif _is_monthly(source):
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif _is_weekly(source):
return target in {source, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif source == "B":
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif source == "C":
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif source == "D":
return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
elif source == "h":
return target in {"h", "min", "s", "ms", "us", "ns"}
elif source == "min":
return target in {"min", "s", "ms", "us", "ns"}
elif source == "s":
return target in {"s", "ms", "us", "ns"}
elif source == "ms":
return target in {"ms", "us", "ns"}
elif source == "us":
return target in {"us", "ns"}
elif source == "ns":
return target in {"ns"}
else:
return False
def _maybe_coerce_freq(code) -> str:
"""we might need to coerce a code to a rule_code
and uppercase it
Parameters
----------
source : str or DateOffset
Frequency converting from
Returns
-------
str
"""
assert code is not None
if isinstance(code, DateOffset):
code = freq_to_period_freqstr(1, code.name)
if code in {"h", "min", "s", "ms", "us", "ns"}:
return code
else:
return code.upper()
def _quarter_months_conform(source: str, target: str) -> bool:
snum = MONTH_NUMBERS[source]
tnum = MONTH_NUMBERS[target]
return snum % 3 == tnum % 3
def _is_annual(rule: str) -> bool:
rule = rule.upper()
return rule == "Y" or rule.startswith("Y-")
def _is_quarterly(rule: str) -> bool:
rule = rule.upper()
return rule == "Q" or rule.startswith(("Q-", "BQ"))
def _is_monthly(rule: str) -> bool:
rule = rule.upper()
return rule in ("M", "BM")
def _is_weekly(rule: str) -> bool:
rule = rule.upper()
return rule == "W" or rule.startswith("W-")
__all__ = [
"Day",
"get_period_alias",
"infer_freq",
"is_subperiod",
"is_superperiod",
"to_offset",
]