@@ -319,9 +319,12 @@ class providing the base-class of operations.
319
319
320
320
See Also
321
321
--------
322
- %(klass)s.groupby.apply
323
- %(klass)s.groupby.aggregate
324
- %(klass)s.transform
322
+ %(klass)s.groupby.apply : Apply function func group-wise
323
+ and combine the results together.
324
+ %(klass)s.groupby.aggregate : Aggregate using one or more
325
+ operations over the specified axis.
326
+ %(klass)s.transform : Transforms the Series on each group
327
+ based on the given function.
325
328
326
329
Notes
327
330
-----
@@ -428,9 +431,12 @@ class providing the base-class of operations.
428
431
429
432
See Also
430
433
--------
431
- {klass}.groupby.apply
432
- {klass}.groupby.transform
433
- {klass}.aggregate
434
+ {klass}.groupby.apply : Apply function func group-wise
435
+ and combine the results together.
436
+ {klass}.groupby.transform : Aggregate using one or more
437
+ operations over the specified axis.
438
+ {klass}.aggregate : Transforms the Series on each group
439
+ based on the given function.
434
440
435
441
Notes
436
442
-----
@@ -1857,8 +1863,8 @@ def _fill(self, direction, limit=None):
1857
1863
1858
1864
See Also
1859
1865
--------
1860
- pad
1861
- backfill
1866
+ pad : Returns Series with minimum number of char in object.
1867
+ backfill : Backward fill the missing values in the dataset.
1862
1868
"""
1863
1869
# Need int value for Cython
1864
1870
if limit is None :
@@ -1892,10 +1898,10 @@ def pad(self, limit=None):
1892
1898
1893
1899
See Also
1894
1900
--------
1895
- Series.pad
1896
- DataFrame.pad
1897
- Series.fillna
1898
- DataFrame.fillna
1901
+ Series.pad: Returns Series with minimum number of char in object.
1902
+ DataFrame.pad: Object with missing values filled or None if inplace=True.
1903
+ Series.fillna: Fill NaN values of a Series.
1904
+ DataFrame.fillna: Fill NaN values of a DataFrame.
1899
1905
"""
1900
1906
return self ._fill ("ffill" , limit = limit )
1901
1907
@@ -1918,10 +1924,10 @@ def backfill(self, limit=None):
1918
1924
1919
1925
See Also
1920
1926
--------
1921
- Series.backfill
1922
- DataFrame.backfill
1923
- Series.fillna
1924
- DataFrame.fillna
1927
+ Series.backfill : Backward fill the missing values in the dataset.
1928
+ DataFrame.backfill: Backward fill the missing values in the dataset
1929
+ Series.fillna: Fill NaN values of a Series.
1930
+ DataFrame.fillna: Fill NaN values of a DataFrame.
1925
1931
"""
1926
1932
return self ._fill ("bfill" , limit = limit )
1927
1933
0 commit comments