forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_any_all.py
180 lines (154 loc) · 5.27 KB
/
test_any_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import builtins
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
isna,
)
import pandas._testing as tm
@pytest.mark.parametrize("agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
"vals",
[
["foo", "bar", "baz"],
["foo", "", ""],
["", "", ""],
[1, 2, 3],
[1, 0, 0],
[0, 0, 0],
[1.0, 2.0, 3.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[True, True, True],
[True, False, False],
[False, False, False],
[np.nan, np.nan, np.nan],
],
)
def test_groupby_bool_aggs(agg_func, skipna, vals):
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
# Figure out expectation using Python builtin
exp = getattr(builtins, agg_func)(vals)
# edge case for missing data with skipna and 'any'
if skipna and all(isna(vals)) and agg_func == "any":
exp = False
exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key"))
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
tm.assert_frame_equal(result, exp_df)
def test_any():
df = DataFrame(
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
columns=["A", "B", "C"],
)
expected = DataFrame(
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
)
expected.index.name = "A"
result = df.groupby("A").any()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_bool_aggs_dup_column_labels(bool_agg_func):
# 21668
df = DataFrame([[True, True]], columns=["a", "a"])
grp_by = df.groupby([0])
result = getattr(grp_by, bool_agg_func)()
expected = df
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
"data",
[
[False, False, False],
[True, True, True],
[pd.NA, pd.NA, pd.NA],
[False, pd.NA, False],
[True, pd.NA, True],
[True, pd.NA, False],
],
)
def test_masked_kleene_logic(bool_agg_func, skipna, data):
# GH#37506
ser = Series(data, dtype="boolean")
# The result should match aggregating on the whole series. Correctness
# there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
expected = Series(expected_data, dtype="boolean")
result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype1,dtype2,exp_col1,exp_col2",
[
(
"float",
"Float64",
np.array([True], dtype=bool),
pd.array([pd.NA], dtype="boolean"),
),
(
"Int64",
"float",
pd.array([pd.NA], dtype="boolean"),
np.array([True], dtype=bool),
),
(
"Int64",
"Int64",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
(
"Float64",
"boolean",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
],
)
def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
# GH#37506
data = [1.0, np.nan]
df = DataFrame(
{"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
)
result = df.groupby([1, 1]).agg("all", skipna=False)
expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=[1])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
@pytest.mark.parametrize("skipna", [True, False])
def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
# GH#40585
obj = frame_or_series([pd.NA, 1], dtype=dtype)
expected_res = True
if not skipna and bool_agg_func == "all":
expected_res = pd.NA
expected = frame_or_series([expected_res], index=[1], dtype="boolean")
result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"bool_agg_func,data,expected_res",
[
("any", [pd.NA, np.nan], False),
("any", [pd.NA, 1, np.nan], True),
("all", [pd.NA, pd.NaT], True),
("all", [pd.NA, False, pd.NaT], False),
],
)
def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
# GH#37501
obj = frame_or_series(data, dtype=object)
result = obj.groupby([1] * len(data)).agg(bool_agg_func)
expected = frame_or_series([expected_res], index=[1], dtype="bool")
tm.assert_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Dropping invalid columns:FutureWarning")
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_object_NA_raises_with_skipna_false(bool_agg_func):
# GH#37501
ser = Series([pd.NA], dtype=object)
with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
ser.groupby([1]).agg(bool_agg_func, skipna=False)