forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasked.py
675 lines (555 loc) · 21.4 KB
/
masked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Sequence,
TypeVar,
)
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._typing import (
ArrayLike,
Dtype,
NpDtype,
PositionalIndexer,
Scalar,
type_t,
)
from pandas.errors import AbstractMethodError
from pandas.util._decorators import (
cache_readonly,
doc,
)
from pandas.util._validators import validate_fillna_kwargs
from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.common import (
is_dtype_equal,
is_integer,
is_object_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.inference import is_array_like
from pandas.core.dtypes.missing import (
isna,
notna,
)
from pandas.core import (
missing,
nanops,
)
from pandas.core.algorithms import (
factorize_array,
isin,
take,
)
from pandas.core.array_algos import masked_reductions
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays import ExtensionArray
from pandas.core.indexers import check_array_indexer
if TYPE_CHECKING:
from pandas import Series
from pandas.core.arrays import BooleanArray
from pandas.compat.numpy import function as nv
BaseMaskedArrayT = TypeVar("BaseMaskedArrayT", bound="BaseMaskedArray")
class BaseMaskedDtype(ExtensionDtype):
"""
Base class for dtypes for BasedMaskedArray subclasses.
"""
name: str
base = None
type: type
na_value = libmissing.NA
@cache_readonly
def numpy_dtype(self) -> np.dtype:
"""Return an instance of our numpy dtype"""
return np.dtype(self.type)
@cache_readonly
def kind(self) -> str:
return self.numpy_dtype.kind
@cache_readonly
def itemsize(self) -> int:
"""Return the number of bytes in this dtype"""
return self.numpy_dtype.itemsize
@classmethod
def construct_array_type(cls) -> type_t[BaseMaskedArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
raise NotImplementedError
class BaseMaskedArray(OpsMixin, ExtensionArray):
"""
Base class for masked arrays (which use _data and _mask to store the data).
numpy based
"""
# The value used to fill '_data' to avoid upcasting
_internal_fill_value: Scalar
# Fill values used for any/all
_truthy_value = Scalar # bool(_truthy_value) = True
_falsey_value = Scalar # bool(_falsey_value) = False
def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False):
# values is supposed to already be validated in the subclass
if not (isinstance(mask, np.ndarray) and mask.dtype == np.bool_):
raise TypeError(
"mask should be boolean numpy array. Use "
"the 'pd.array' function instead"
)
if values.ndim != 1:
raise ValueError("values must be a 1D array")
if mask.ndim != 1:
raise ValueError("mask must be a 1D array")
if copy:
values = values.copy()
mask = mask.copy()
self._data = values
self._mask = mask
@property
def dtype(self) -> BaseMaskedDtype:
raise AbstractMethodError(self)
def __getitem__(self, item: PositionalIndexer) -> BaseMaskedArray | Any:
if is_integer(item):
if self._mask[item]:
return self.dtype.na_value
return self._data[item]
item = check_array_indexer(self, item)
return type(self)(self._data[item], self._mask[item])
@doc(ExtensionArray.fillna)
def fillna(
self: BaseMaskedArrayT, value=None, method=None, limit=None
) -> BaseMaskedArrayT:
value, method = validate_fillna_kwargs(value, method)
mask = self._mask
if is_array_like(value):
if len(value) != len(self):
raise ValueError(
f"Length of 'value' does not match. Got ({len(value)}) "
f" expected {len(self)}"
)
value = value[mask]
if mask.any():
if method is not None:
func = missing.get_fill_func(method)
new_values, new_mask = func(
self._data.copy(),
limit=limit,
mask=mask.copy(),
)
return type(self)(new_values, new_mask.view(np.bool_))
else:
# fill with value
new_values = self.copy()
new_values[mask] = value
else:
new_values = self.copy()
return new_values
def _coerce_to_array(self, values) -> tuple[np.ndarray, np.ndarray]:
raise AbstractMethodError(self)
def __setitem__(self, key, value) -> None:
_is_scalar = is_scalar(value)
if _is_scalar:
value = [value]
value, mask = self._coerce_to_array(value)
if _is_scalar:
value = value[0]
mask = mask[0]
key = check_array_indexer(self, key)
self._data[key] = value
self._mask[key] = mask
def __iter__(self):
for i in range(len(self)):
if self._mask[i]:
yield self.dtype.na_value
else:
yield self._data[i]
def __len__(self) -> int:
return len(self._data)
def __invert__(self: BaseMaskedArrayT) -> BaseMaskedArrayT:
return type(self)(~self._data, self._mask.copy())
# error: Argument 1 of "to_numpy" is incompatible with supertype "ExtensionArray";
# supertype defines the argument type as "Union[ExtensionDtype, str, dtype[Any],
# Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], None]"
def to_numpy( # type: ignore[override]
self,
dtype: NpDtype | None = None,
copy: bool = False,
na_value: Scalar = lib.no_default,
) -> np.ndarray:
"""
Convert to a NumPy Array.
By default converts to an object-dtype NumPy array. Specify the `dtype` and
`na_value` keywords to customize the conversion.
Parameters
----------
dtype : dtype, default object
The numpy dtype to convert to.
copy : bool, default False
Whether to ensure that the returned value is a not a view on
the array. Note that ``copy=False`` does not *ensure* that
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
a copy is made, even if not strictly necessary. This is typically
only possible when no missing values are present and `dtype`
is the equivalent numpy dtype.
na_value : scalar, optional
Scalar missing value indicator to use in numpy array. Defaults
to the native missing value indicator of this array (pd.NA).
Returns
-------
numpy.ndarray
Examples
--------
An object-dtype is the default result
>>> a = pd.array([True, False, pd.NA], dtype="boolean")
>>> a.to_numpy()
array([True, False, <NA>], dtype=object)
When no missing values are present, an equivalent dtype can be used.
>>> pd.array([True, False], dtype="boolean").to_numpy(dtype="bool")
array([ True, False])
>>> pd.array([1, 2], dtype="Int64").to_numpy("int64")
array([1, 2])
However, requesting such dtype will raise a ValueError if
missing values are present and the default missing value :attr:`NA`
is used.
>>> a = pd.array([True, False, pd.NA], dtype="boolean")
>>> a
<BooleanArray>
[True, False, <NA>]
Length: 3, dtype: boolean
>>> a.to_numpy(dtype="bool")
Traceback (most recent call last):
...
ValueError: cannot convert to bool numpy array in presence of missing values
Specify a valid `na_value` instead
>>> a.to_numpy(dtype="bool", na_value=False)
array([ True, False, False])
"""
if na_value is lib.no_default:
na_value = libmissing.NA
if dtype is None:
# error: Incompatible types in assignment (expression has type
# "Type[object]", variable has type "Union[str, dtype[Any], None]")
dtype = object # type: ignore[assignment]
if self._hasna:
if (
not is_object_dtype(dtype)
and not is_string_dtype(dtype)
and na_value is libmissing.NA
):
raise ValueError(
f"cannot convert to '{dtype}'-dtype NumPy array "
"with missing values. Specify an appropriate 'na_value' "
"for this dtype."
)
# don't pass copy to astype -> always need a copy since we are mutating
data = self._data.astype(dtype)
data[self._mask] = na_value
else:
data = self._data.astype(dtype, copy=copy)
return data
def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike:
dtype = pandas_dtype(dtype)
if is_dtype_equal(dtype, self.dtype):
if copy:
return self.copy()
return self
# if we are astyping to another nullable masked dtype, we can fastpath
if isinstance(dtype, BaseMaskedDtype):
# TODO deal with NaNs for FloatingArray case
data = self._data.astype(dtype.numpy_dtype, copy=copy)
# mask is copied depending on whether the data was copied, and
# not directly depending on the `copy` keyword
mask = self._mask if data is self._data else self._mask.copy()
cls = dtype.construct_array_type()
return cls(data, mask, copy=False)
if isinstance(dtype, ExtensionDtype):
eacls = dtype.construct_array_type()
return eacls._from_sequence(self, dtype=dtype, copy=copy)
raise NotImplementedError("subclass must implement astype to np.dtype")
__array_priority__ = 1000 # higher than ndarray so ops dispatch to us
def __array__(self, dtype: NpDtype | None = None) -> np.ndarray:
"""
the array interface, return my values
We return an object array here to preserve our scalar values
"""
return self.to_numpy(dtype=dtype)
def __arrow_array__(self, type=None):
"""
Convert myself into a pyarrow Array.
"""
import pyarrow as pa
return pa.array(self._data, mask=self._mask, type=type)
@property
def _hasna(self) -> bool:
# Note: this is expensive right now! The hope is that we can
# make this faster by having an optional mask, but not have to change
# source code using it..
# error: Incompatible return value type (got "bool_", expected "bool")
return self._mask.any() # type: ignore[return-value]
def isna(self) -> np.ndarray:
return self._mask.copy()
@property
def _na_value(self):
return self.dtype.na_value
@property
def nbytes(self) -> int:
return self._data.nbytes + self._mask.nbytes
@classmethod
def _concat_same_type(
cls: type[BaseMaskedArrayT], to_concat: Sequence[BaseMaskedArrayT]
) -> BaseMaskedArrayT:
data = np.concatenate([x._data for x in to_concat])
mask = np.concatenate([x._mask for x in to_concat])
return cls(data, mask)
def take(
self: BaseMaskedArrayT,
indexer,
*,
allow_fill: bool = False,
fill_value: Scalar | None = None,
) -> BaseMaskedArrayT:
# we always fill with 1 internally
# to avoid upcasting
data_fill_value = self._internal_fill_value if isna(fill_value) else fill_value
result = take(
self._data, indexer, fill_value=data_fill_value, allow_fill=allow_fill
)
mask = take(self._mask, indexer, fill_value=True, allow_fill=allow_fill)
# if we are filling
# we only fill where the indexer is null
# not existing missing values
# TODO(jreback) what if we have a non-na float as a fill value?
if allow_fill and notna(fill_value):
fill_mask = np.asarray(indexer) == -1
result[fill_mask] = fill_value
mask = mask ^ fill_mask
return type(self)(result, mask, copy=False)
# error: Return type "BooleanArray" of "isin" incompatible with return type
# "ndarray" in supertype "ExtensionArray"
def isin(self, values) -> BooleanArray: # type: ignore[override]
from pandas.core.arrays import BooleanArray
# algorithms.isin will eventually convert values to an ndarray, so no extra
# cost to doing it here first
values_arr = np.asarray(values)
result = isin(self._data, values_arr)
if self._hasna:
values_have_NA = is_object_dtype(values_arr.dtype) and any(
val is self.dtype.na_value for val in values_arr
)
# For now, NA does not propagate so set result according to presence of NA,
# see https://github.com/pandas-dev/pandas/pull/38379 for some discussion
result[self._mask] = values_have_NA
mask = np.zeros(self._data.shape, dtype=bool)
return BooleanArray(result, mask, copy=False)
def copy(self: BaseMaskedArrayT) -> BaseMaskedArrayT:
data, mask = self._data, self._mask
data = data.copy()
mask = mask.copy()
return type(self)(data, mask, copy=False)
@doc(ExtensionArray.factorize)
def factorize(self, na_sentinel: int = -1) -> tuple[np.ndarray, ExtensionArray]:
arr = self._data
mask = self._mask
codes, uniques = factorize_array(arr, na_sentinel=na_sentinel, mask=mask)
# the hashtables don't handle all different types of bits
uniques = uniques.astype(self.dtype.numpy_dtype, copy=False)
# error: Incompatible types in assignment (expression has type
# "BaseMaskedArray", variable has type "ndarray")
uniques = type(self)( # type: ignore[assignment]
uniques, np.zeros(len(uniques), dtype=bool)
)
# error: Incompatible return value type (got "Tuple[ndarray, ndarray]",
# expected "Tuple[ndarray, ExtensionArray]")
return codes, uniques # type: ignore[return-value]
def value_counts(self, dropna: bool = True) -> Series:
"""
Returns a Series containing counts of each unique value.
Parameters
----------
dropna : bool, default True
Don't include counts of missing values.
Returns
-------
counts : Series
See Also
--------
Series.value_counts
"""
from pandas import (
Index,
Series,
)
from pandas.arrays import IntegerArray
# compute counts on the data with no nans
data = self._data[~self._mask]
value_counts = Index(data).value_counts()
# TODO(extension)
# if we have allow Index to hold an ExtensionArray
# this is easier
index = value_counts.index._values.astype(object)
# if we want nans, count the mask
if dropna:
counts = value_counts._values
else:
counts = np.empty(len(value_counts) + 1, dtype="int64")
counts[:-1] = value_counts
counts[-1] = self._mask.sum()
index = Index(
np.concatenate([index, np.array([self.dtype.na_value], dtype=object)]),
dtype=object,
)
mask = np.zeros(len(counts), dtype="bool")
counts = IntegerArray(counts, mask)
return Series(counts, index=index)
def _reduce(self, name: str, *, skipna: bool = True, **kwargs):
if name in {"any", "all"}:
return getattr(self, name)(skipna=skipna, **kwargs)
data = self._data
mask = self._mask
if name in {"sum", "prod", "min", "max", "mean"}:
op = getattr(masked_reductions, name)
return op(data, mask, skipna=skipna, **kwargs)
# coerce to a nan-aware float if needed
# (we explicitly use NaN within reductions)
if self._hasna:
data = self.to_numpy("float64", na_value=np.nan)
op = getattr(nanops, "nan" + name)
result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs)
if np.isnan(result):
return libmissing.NA
return result
def any(self, *, skipna: bool = True, **kwargs):
"""
Return whether any element is truthy.
Returns False unless there is at least one element that is truthy.
By default, NAs are skipped. If ``skipna=False`` is specified and
missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
is used as for logical operations.
.. versionchanged:: 1.4.0
Parameters
----------
skipna : bool, default True
Exclude NA values. If the entire array is NA and `skipna` is
True, then the result will be False, as for an empty array.
If `skipna` is False, the result will still be True if there is
at least one element that is truthy, otherwise NA will be returned
if there are NA's present.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
bool or :attr:`pandas.NA`
See Also
--------
numpy.any : Numpy version of this method.
BaseMaskedArray.all : Return whether all elements are truthy.
Examples
--------
The result indicates whether any element is truthy (and by default
skips NAs):
>>> pd.array([True, False, True]).any()
True
>>> pd.array([True, False, pd.NA]).any()
True
>>> pd.array([False, False, pd.NA]).any()
False
>>> pd.array([], dtype="boolean").any()
False
>>> pd.array([pd.NA], dtype="boolean").any()
False
>>> pd.array([pd.NA], dtype="Float64").any()
False
With ``skipna=False``, the result can be NA if this is logically
required (whether ``pd.NA`` is True or False influences the result):
>>> pd.array([True, False, pd.NA]).any(skipna=False)
True
>>> pd.array([1, 0, pd.NA]).any(skipna=False)
True
>>> pd.array([False, False, pd.NA]).any(skipna=False)
<NA>
>>> pd.array([0, 0, pd.NA]).any(skipna=False)
<NA>
"""
kwargs.pop("axis", None)
nv.validate_any((), kwargs)
values = self._data.copy()
np.putmask(values, self._mask, self._falsey_value)
result = values.any()
if skipna:
return result
else:
if result or len(self) == 0 or not self._mask.any():
return result
else:
return self.dtype.na_value
def all(self, *, skipna: bool = True, **kwargs):
"""
Return whether all elements are truthy.
Returns True unless there is at least one element that is falsey.
By default, NAs are skipped. If ``skipna=False`` is specified and
missing values are present, similar :ref:`Kleene logic <boolean.kleene>`
is used as for logical operations.
.. versionchanged:: 1.4.0
Parameters
----------
skipna : bool, default True
Exclude NA values. If the entire array is NA and `skipna` is
True, then the result will be True, as for an empty array.
If `skipna` is False, the result will still be False if there is
at least one element that is falsey, otherwise NA will be returned
if there are NA's present.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
bool or :attr:`pandas.NA`
See Also
--------
numpy.all : Numpy version of this method.
BooleanArray.any : Return whether any element is truthy.
Examples
--------
The result indicates whether all elements are truthy (and by default
skips NAs):
>>> pd.array([True, True, pd.NA]).all()
True
>>> pd.array([1, 1, pd.NA]).all()
True
>>> pd.array([True, False, pd.NA]).all()
False
>>> pd.array([], dtype="boolean").all()
True
>>> pd.array([pd.NA], dtype="boolean").all()
True
>>> pd.array([pd.NA], dtype="Float64").all()
True
With ``skipna=False``, the result can be NA if this is logically
required (whether ``pd.NA`` is True or False influences the result):
>>> pd.array([True, True, pd.NA]).all(skipna=False)
<NA>
>>> pd.array([1, 1, pd.NA]).all(skipna=False)
<NA>
>>> pd.array([True, False, pd.NA]).all(skipna=False)
False
>>> pd.array([1, 0, pd.NA]).all(skipna=False)
False
"""
kwargs.pop("axis", None)
nv.validate_all((), kwargs)
values = self._data.copy()
np.putmask(values, self._mask, self._truthy_value)
result = values.all()
if skipna:
return result
else:
if not result or len(self) == 0 or not self._mask.any():
return result
else:
return self.dtype.na_value