@@ -282,8 +282,8 @@ def from_job_desc(cls, hyperband_strategy_config):
282
282
283
283
Returns:
284
284
sagemaker.tuner.HyperbandStrategyConfig: De-serialized instance of
285
- HyperbandStrategyConfig containing the max_resource and min_resource provided as part of
286
- ``hyperband_strategy_config``.
285
+ ``HyperbandStrategyConfig`` containing the max_resource
286
+ and min_resource provided as part of ``hyperband_strategy_config``.
287
287
"""
288
288
return cls (
289
289
min_resource = hyperband_strategy_config [HYPERBAND_MIN_RESOURCE ],
@@ -306,7 +306,7 @@ def to_input_req(self):
306
306
307
307
Returns:
308
308
dict: Containing the "MaxResource" and
309
- "MinResource" as the first class fields.
309
+ "MinResource" as the first class fields.
310
310
"""
311
311
return {
312
312
HYPERBAND_MIN_RESOURCE : self .min_resource ,
@@ -330,7 +330,7 @@ def __init__(
330
330
331
331
Args:
332
332
hyperband_strategy_config (sagemaker.tuner.HyperbandStrategyConfig): The configuration
333
- for the object that specifies the Hyperband strategy.
333
+ for the object that specifies the Hyperband strategy.
334
334
This parameter is only supported for the Hyperband selection for Strategy within
335
335
the HyperParameterTuningJobConfig.
336
336
"""
@@ -461,7 +461,7 @@ def __init__(
461
461
``WarmStartConfig`` object that has been initialized with the
462
462
configuration defining the nature of warm start tuning job.
463
463
strategy_config (sagemaker.tuner.StrategyConfig): A configuration for "Hyperparameter"
464
- tuning job optimisation strategy.
464
+ tuning job optimisation strategy.
465
465
early_stopping_type (str or PipelineVariable): Specifies whether early stopping is
466
466
enabled for the job. Can be either 'Auto' or 'Off' (default:
467
467
'Off'). If set to 'Off', early stopping will not be attempted.
@@ -1569,7 +1569,7 @@ def create(
1569
1569
strategy (str): Strategy to be used for hyperparameter estimations
1570
1570
(default: 'Bayesian').
1571
1571
strategy_config (dict): The configuration for a training job launched by a
1572
- hyperparameter tuning job.
1572
+ hyperparameter tuning job.
1573
1573
objective_type (str): The type of the objective metric for evaluating training jobs.
1574
1574
This value can be either 'Minimize' or 'Maximize' (default: 'Maximize').
1575
1575
max_jobs (int): Maximum total number of training jobs to start for the hyperparameter
@@ -1776,7 +1776,7 @@ def _get_tuner_args(cls, tuner, inputs):
1776
1776
}
1777
1777
1778
1778
if tuner .strategy_config is not None :
1779
- tuning_config ["strategy_config" ] = tuner .strategy_config
1779
+ tuning_config ["strategy_config" ] = tuner .strategy_config . to_input_req ()
1780
1780
1781
1781
if tuner .objective_metric_name is not None :
1782
1782
tuning_config ["objective_type" ] = tuner .objective_type
0 commit comments