{{ header }}
Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.
Most of the examples will utilize the tips
dataset found within pandas tests. We'll read
the data into a DataFrame called tips
and assume we have a database table of the same name and
structure.
.. ipython:: python url = ( "https://raw.githubusercontent.com/pandas-dev" "/pandas/main/pandas/tests/io/data/csv/tips.csv" ) tips = pd.read_csv(url) tips
In SQL, selection is done using a comma-separated list of columns you'd like to select (or a *
to select all columns):
SELECT total_bill, tip, smoker, time
FROM tips;
With pandas, column selection is done by passing a list of column names to your DataFrame:
.. ipython:: python tips[["total_bill", "tip", "smoker", "time"]]
Calling the DataFrame without the list of column names would display all columns (akin to SQL's
*
).
In SQL, you can add a calculated column:
SELECT *, tip/total_bill as tip_rate
FROM tips;
With pandas, you can use the :meth:`DataFrame.assign` method of a DataFrame to append a new column:
.. ipython:: python tips.assign(tip_rate=tips["tip"] / tips["total_bill"])
Filtering in SQL is done via a WHERE clause.
SELECT *
FROM tips
WHERE time = 'Dinner';
Just like SQL's OR
and AND
, multiple conditions can be passed to a DataFrame using |
(OR
) and &
(AND
).
Tips of more than $5 at Dinner meals:
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
.. ipython:: python tips[(tips["time"] == "Dinner") & (tips["tip"] > 5.00)]
Tips by parties of at least 5 diners OR bill total was more than $45:
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
.. ipython:: python tips[(tips["size"] >= 5) | (tips["total_bill"] > 45)]
NULL checking is done using the :meth:`~pandas.Series.notna` and :meth:`~pandas.Series.isna` methods.
.. ipython:: python frame = pd.DataFrame( {"col1": ["A", "B", np.nan, "C", "D"], "col2": ["F", np.nan, "G", "H", "I"]} ) frame
Assume we have a table of the same structure as our DataFrame above. We can see only the records
where col2
IS NULL with the following query:
SELECT *
FROM frame
WHERE col2 IS NULL;
.. ipython:: python frame[frame["col2"].isna()]
Getting items where col1
IS NOT NULL can be done with :meth:`~pandas.Series.notna`.
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
.. ipython:: python frame[frame["col1"].notna()]
In pandas, SQL's GROUP BY
operations are performed using the similarly named
:meth:`~pandas.DataFrame.groupby` method. :meth:`~pandas.DataFrame.groupby` typically refers to a
process where we'd like to split a dataset into groups, apply some function (typically aggregation)
, and then combine the groups together.
A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
The pandas equivalent would be:
.. ipython:: python tips.groupby("sex").size()
Notice that in the pandas code we used :meth:`~pandas.core.groupby.DataFrameGroupBy.size` and not
:meth:`~pandas.core.groupby.DataFrameGroupBy.count`. This is because
:meth:`~pandas.core.groupby.DataFrameGroupBy.count` applies the function to each column, returning
the number of NOT NULL
records within each.
.. ipython:: python tips.groupby("sex").count()
Alternatively, we could have applied the :meth:`~pandas.core.groupby.DataFrameGroupBy.count` method to an individual column:
.. ipython:: python tips.groupby("sex")["total_bill"].count()
Multiple functions can also be applied at once. For instance, say we'd like to see how tip amount differs by day of the week - :meth:`~pandas.core.groupby.DataFrameGroupBy.agg` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thu 2.771452 62
*/
.. ipython:: python tips.groupby("day").agg({"tip": "mean", "day": "size"})
Grouping by more than one column is done by passing a list of columns to the :meth:`~pandas.DataFrame.groupby` method.
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thu 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thu 17 3.030000
*/
.. ipython:: python tips.groupby(["smoker", "day"]).agg({"tip": ["size", "mean"]})
JOIN
s can be performed with :meth:`~pandas.DataFrame.join` or :meth:`~pandas.merge`. By
default, :meth:`~pandas.DataFrame.join` will join the DataFrames on their indices. Each method has
parameters allowing you to specify the type of join to perform (LEFT
, RIGHT
, INNER
,
FULL
) or the columns to join on (column names or indices).
Warning
If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results.
.. ipython:: python df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)}) df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)})
Assume we have two database tables of the same name and structure as our DataFrames.
Now let's go over the various types of JOIN
s.
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
.. ipython:: python # merge performs an INNER JOIN by default pd.merge(df1, df2, on="key")
:meth:`~pandas.merge` also offers parameters for cases when you'd like to join one DataFrame's column with another DataFrame's index.
.. ipython:: python indexed_df2 = df2.set_index("key") pd.merge(df1, indexed_df2, left_on="key", right_index=True)
Show all records from df1
.
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python pd.merge(df1, df2, on="key", how="left")
Show all records from df2
.
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python pd.merge(df1, df2, on="key", how="right")
pandas also allows for FULL JOIN
s, which display both sides of the dataset, whether or not the
joined columns find a match. As of writing, FULL JOIN
s are not supported in all RDBMS (MySQL).
Show all records from both tables.
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python pd.merge(df1, df2, on="key", how="outer")
UNION ALL
can be performed using :meth:`~pandas.concat`.
.. ipython:: python df1 = pd.DataFrame( {"city": ["Chicago", "San Francisco", "New York City"], "rank": range(1, 4)} ) df2 = pd.DataFrame( {"city": ["Chicago", "Boston", "Los Angeles"], "rank": [1, 4, 5]} )
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
.. ipython:: python pd.concat([df1, df2])
SQL's UNION
is similar to UNION ALL
, however UNION
will remove duplicate rows.
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
In pandas, you can use :meth:`~pandas.concat` in conjunction with :meth:`~pandas.DataFrame.drop_duplicates`.
.. ipython:: python pd.concat([df1, df2]).drop_duplicates()
SELECT * FROM tips
LIMIT 10;
.. ipython:: python tips.head(10)
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
.. ipython:: python tips.nlargest(10 + 5, columns="tip").tail(10)
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
.. ipython:: python ( tips.assign( rn=tips.sort_values(["total_bill"], ascending=False) .groupby(["day"]) .cumcount() + 1 ) .query("rn < 3") .sort_values(["day", "rn"]) )
the same using rank(method='first')
function
.. ipython:: python ( tips.assign( rnk=tips.groupby(["day"])["total_bill"].rank( method="first", ascending=False ) ) .query("rnk < 3") .sort_values(["day", "rnk"]) )
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
Let's find tips with (rank < 3) per gender group for (tips < 2).
Notice that when using rank(method='min')
function
rnk_min
remains the same for the same tip
(as Oracle's RANK()
function)
.. ipython:: python ( tips[tips["tip"] < 2] .assign(rnk_min=tips.groupby(["sex"])["tip"].rank(method="min")) .query("rnk_min < 3") .sort_values(["sex", "rnk_min"]) )
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
.. ipython:: python tips.loc[tips["tip"] < 2, "tip"] *= 2
DELETE FROM tips
WHERE tip > 9;
In pandas we select the rows that should remain instead of deleting them:
.. ipython:: python tips = tips.loc[tips["tip"] <= 9]