forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcsv.py
249 lines (187 loc) · 8.13 KB
/
csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import random
import timeit
import string
import numpy as np
import pandas.util.testing as tm
from pandas import DataFrame, Categorical, date_range, read_csv
from pandas.compat import PY2
from pandas.compat import cStringIO as StringIO
from ..pandas_vb_common import setup, BaseIO # noqa
class ToCSV(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = ['wide', 'long', 'mixed']
param_names = ['kind']
def setup(self, kind):
wide_frame = DataFrame(np.random.randn(3000, 30))
long_frame = DataFrame({'A': np.arange(50000),
'B': np.arange(50000) + 1.,
'C': np.arange(50000) + 2.,
'D': np.arange(50000) + 3.})
mixed_frame = DataFrame({'float': np.random.randn(5000),
'int': np.random.randn(5000).astype(int),
'bool': (np.arange(5000) % 2) == 0,
'datetime': date_range('2001',
freq='s',
periods=5000),
'object': ['foo'] * 5000})
mixed_frame.loc[30:500, 'float'] = np.nan
data = {'wide': wide_frame,
'long': long_frame,
'mixed': mixed_frame}
self.df = data[kind]
def time_frame(self, kind):
self.df.to_csv(self.fname)
class ToCSVDatetime(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
def setup(self):
rng = date_range('1/1/2000', periods=1000)
self.data = DataFrame(rng, index=rng)
def time_frame_date_formatting(self):
self.data.to_csv(self.fname, date_format='%Y%m%d')
class ReadCSVDInferDatetimeFormat(object):
goal_time = 0.2
params = ([True, False], ['custom', 'iso8601', 'ymd'])
param_names = ['infer_datetime_format', 'format']
def setup(self, infer_datetime_format, format):
rng = date_range('1/1/2000', periods=1000)
formats = {'custom': '%m/%d/%Y %H:%M:%S.%f',
'iso8601': '%Y-%m-%d %H:%M:%S',
'ymd': '%Y%m%d'}
dt_format = formats[format]
self.data = StringIO('\n'.join(rng.strftime(dt_format).tolist()))
def time_read_csv(self, infer_datetime_format, format):
read_csv(self.data, header=None, names=['foo'], parse_dates=['foo'],
infer_datetime_format=infer_datetime_format)
class ReadCSVSkipRows(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = [None, 10000]
param_names = ['skiprows']
def setup(self, skiprows):
N = 20000
index = tm.makeStringIndex(N)
df = DataFrame({'float1': np.random.randn(N),
'float2': np.random.randn(N),
'string1': ['foo'] * N,
'bool1': [True] * N,
'int1': np.random.randint(0, N, size=N)},
index=index)
df.to_csv(self.fname)
def time_skipprows(self, skiprows):
read_csv(self.fname, skiprows=skiprows)
class ReadUint64Integers(object):
goal_time = 0.2
def setup(self):
self.na_values = [2**63 + 500]
arr = np.arange(10000).astype('uint64') + 2**63
self.data1 = StringIO('\n'.join(arr.astype(str).tolist()))
arr = arr.astype(object)
arr[500] = -1
self.data2 = StringIO('\n'.join(arr.astype(str).tolist()))
def time_read_uint64(self):
read_csv(self.data1, header=None, names=['foo'])
def time_read_uint64_neg_values(self):
read_csv(self.data2, header=None, names=['foo'])
def time_read_uint64_na_values(self):
read_csv(self.data1, header=None, names=['foo'],
na_values=self.na_values)
class S3(object):
# Make sure that we can read part of a file from S3 without
# needing to download the entire thing. Use the timeit.default_timer
# to measure wall time instead of CPU time -- we want to see
# how long it takes to download the data.
timer = timeit.default_timer
params = ([None, "gzip", "bz2"], ["python", "c"])
param_names = ["compression", "engine"]
def setup(self, compression, engine):
if compression == "bz2" and engine == "c" and PY2:
# The Python 2 C parser can't read bz2 from open files.
raise NotImplementedError
try:
import s3fs
except ImportError:
# Skip these benchmarks if `boto` is not installed.
raise NotImplementedError
ext = ""
if compression == "gzip":
ext = ".gz"
elif compression == "bz2":
ext = ".bz2"
self.big_fname = "s3://pandas-test/large_random.csv" + ext
def time_read_csv_10_rows(self, compression, engine):
# Read a small number of rows from a huge (100,000 x 50) table.
read_csv(self.big_fname, nrows=10, compression=compression,
engine=engine)
class ReadCSVThousands(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
params = ([',', '|'], [None, ','])
param_names = ['sep', 'thousands']
def setup(self, sep, thousands):
N = 10000
K = 8
data = np.random.randn(N, K) * np.random.randint(100, 10000, (N, K))
df = DataFrame(data)
if thousands is not None:
fmt = ':{}'.format(thousands)
fmt = '{' + fmt + '}'
df = df.applymap(lambda x: fmt.format(x))
df.to_csv(self.fname, sep=sep)
def time_thousands(self, sep, thousands):
read_csv(self.fname, sep=sep, thousands=thousands)
class ReadCSVComment(object):
goal_time = 0.2
def setup(self):
data = ['A,B,C'] + (['1,2,3 # comment'] * 100000)
self.s_data = StringIO('\n'.join(data))
def time_comment(self):
read_csv(self.s_data, comment='#', header=None, names=list('abc'))
class ReadCSVFloatPrecision(object):
goal_time = 0.2
params = ([',', ';'], ['.', '_'], [None, 'high', 'round_trip'])
param_names = ['sep', 'decimal', 'float_precision']
def setup(self, sep, decimal, float_precision):
floats = [''.join(random.choice(string.digits) for _ in range(28))
for _ in range(15)]
rows = sep.join(['0{}'.format(decimal) + '{}'] * 3) + '\n'
data = rows * 5
data = data.format(*floats) * 200 # 1000 x 3 strings csv
self.s_data = StringIO(data)
def time_read_csv(self, sep, decimal, float_precision):
read_csv(self.s_data, sep=sep, header=None, names=list('abc'),
float_precision=float_precision)
def time_read_csv_python_engine(self, sep, decimal, float_precision):
read_csv(self.s_data, sep=sep, header=None, engine='python',
float_precision=None, names=list('abc'))
class ReadCSVCategorical(BaseIO):
goal_time = 0.2
fname = '__test__.csv'
def setup(self):
N = 100000
group1 = ['aaaaaaaa', 'bbbbbbb', 'cccccccc', 'dddddddd', 'eeeeeeee']
df = DataFrame(np.random.choice(group1, (N, 3)), columns=list('abc'))
df.to_csv(self.fname, index=False)
def time_convert_post(self):
read_csv(self.fname).apply(Categorical)
def time_convert_direct(self):
read_csv(self.fname, dtype='category')
class ReadCSVParseDates(object):
goal_time = 0.2
def setup(self):
data = """{},19:00:00,18:56:00,0.8100,2.8100,7.2000,0.0000,280.0000\n
{},20:00:00,19:56:00,0.0100,2.2100,7.2000,0.0000,260.0000\n
{},21:00:00,20:56:00,-0.5900,2.2100,5.7000,0.0000,280.0000\n
{},21:00:00,21:18:00,-0.9900,2.0100,3.6000,0.0000,270.0000\n
{},22:00:00,21:56:00,-0.5900,1.7100,5.1000,0.0000,290.0000\n
"""
two_cols = ['KORD,19990127'] * 5
data = data.format(*two_cols)
self.s_data = StringIO(data)
def time_multiple_date(self):
read_csv(self.s_data, sep=',', header=None,
names=list(string.digits[:9]), parse_dates=[[1, 2], [1, 3]])
def time_baseline(self):
read_csv(self.s_data, sep=',', header=None, parse_dates=[1],
names=list(string.digits[:9]))