forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsorting.py
729 lines (605 loc) · 21.7 KB
/
sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
"""miscellaneous sorting / groupby utilities"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Callable,
cast,
)
import numpy as np
from pandas._libs import (
algos,
hashtable,
lib,
)
from pandas._libs.hashtable import unique_label_indices
from pandas.core.dtypes.common import (
ensure_int64,
ensure_platform_int,
)
from pandas.core.dtypes.generic import (
ABCMultiIndex,
ABCRangeIndex,
)
from pandas.core.dtypes.missing import isna
from pandas.core.construction import extract_array
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Sequence,
)
from pandas._typing import (
ArrayLike,
AxisInt,
IndexKeyFunc,
Level,
NaPosition,
Shape,
SortKind,
npt,
)
from pandas import (
MultiIndex,
Series,
)
from pandas.core.arrays import ExtensionArray
from pandas.core.indexes.base import Index
def get_indexer_indexer(
target: Index,
level: Level | list[Level] | None,
ascending: list[bool] | bool,
kind: SortKind,
na_position: NaPosition,
sort_remaining: bool,
key: IndexKeyFunc,
) -> npt.NDArray[np.intp] | None:
"""
Helper method that return the indexer according to input parameters for
the sort_index method of DataFrame and Series.
Parameters
----------
target : Index
level : int or level name or list of ints or list of level names
ascending : bool or list of bools, default True
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}
na_position : {'first', 'last'}
sort_remaining : bool
key : callable, optional
Returns
-------
Optional[ndarray[intp]]
The indexer for the new index.
"""
# error: Incompatible types in assignment (expression has type
# "Union[ExtensionArray, ndarray[Any, Any], Index, Series]", variable has
# type "Index")
target = ensure_key_mapped(target, key, levels=level) # type: ignore[assignment]
target = target._sort_levels_monotonic()
if level is not None:
_, indexer = target.sortlevel(
level,
ascending=ascending,
sort_remaining=sort_remaining,
na_position=na_position,
)
elif (np.all(ascending) and target.is_monotonic_increasing) or (
not np.any(ascending) and target.is_monotonic_decreasing
):
# Check monotonic-ness before sort an index (GH 11080)
return None
elif isinstance(target, ABCMultiIndex):
codes = [lev.codes for lev in target._get_codes_for_sorting()]
indexer = lexsort_indexer(
codes, orders=ascending, na_position=na_position, codes_given=True
)
else:
# ascending can only be a Sequence for MultiIndex
indexer = nargsort(
target,
kind=kind,
ascending=cast(bool, ascending),
na_position=na_position,
)
return indexer
def get_group_index(
labels, shape: Shape, sort: bool, xnull: bool
) -> npt.NDArray[np.int64]:
"""
For the particular label_list, gets the offsets into the hypothetical list
representing the totally ordered cartesian product of all possible label
combinations, *as long as* this space fits within int64 bounds;
otherwise, though group indices identify unique combinations of
labels, they cannot be deconstructed.
- If `sort`, rank of returned ids preserve lexical ranks of labels.
i.e. returned id's can be used to do lexical sort on labels;
- If `xnull` nulls (-1 labels) are passed through.
Parameters
----------
labels : sequence of arrays
Integers identifying levels at each location
shape : tuple[int, ...]
Number of unique levels at each location
sort : bool
If the ranks of returned ids should match lexical ranks of labels
xnull : bool
If true nulls are excluded. i.e. -1 values in the labels are
passed through.
Returns
-------
An array of type int64 where two elements are equal if their corresponding
labels are equal at all location.
Notes
-----
The length of `labels` and `shape` must be identical.
"""
def _int64_cut_off(shape) -> int:
acc = 1
for i, mul in enumerate(shape):
acc *= int(mul)
if not acc < lib.i8max:
return i
return len(shape)
def maybe_lift(lab, size: int) -> tuple[np.ndarray, int]:
# promote nan values (assigned -1 label in lab array)
# so that all output values are non-negative
return (lab + 1, size + 1) if (lab == -1).any() else (lab, size)
labels = [ensure_int64(x) for x in labels]
lshape = list(shape)
if not xnull:
for i, (lab, size) in enumerate(zip(labels, shape)):
labels[i], lshape[i] = maybe_lift(lab, size)
labels = list(labels)
# Iteratively process all the labels in chunks sized so less
# than lib.i8max unique int ids will be required for each chunk
while True:
# how many levels can be done without overflow:
nlev = _int64_cut_off(lshape)
# compute flat ids for the first `nlev` levels
stride = np.prod(lshape[1:nlev], dtype="i8")
out = stride * labels[0].astype("i8", subok=False, copy=False)
for i in range(1, nlev):
if lshape[i] == 0:
stride = np.int64(0)
else:
stride //= lshape[i]
out += labels[i] * stride
if xnull: # exclude nulls
mask = labels[0] == -1
for lab in labels[1:nlev]:
mask |= lab == -1
out[mask] = -1
if nlev == len(lshape): # all levels done!
break
# compress what has been done so far in order to avoid overflow
# to retain lexical ranks, obs_ids should be sorted
comp_ids, obs_ids = compress_group_index(out, sort=sort)
labels = [comp_ids] + labels[nlev:]
lshape = [len(obs_ids)] + lshape[nlev:]
return out
def get_compressed_ids(
labels, sizes: Shape
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]:
"""
Group_index is offsets into cartesian product of all possible labels. This
space can be huge, so this function compresses it, by computing offsets
(comp_ids) into the list of unique labels (obs_group_ids).
Parameters
----------
labels : list of label arrays
sizes : tuple[int] of size of the levels
Returns
-------
np.ndarray[np.intp]
comp_ids
np.ndarray[np.int64]
obs_group_ids
"""
ids = get_group_index(labels, sizes, sort=True, xnull=False)
return compress_group_index(ids, sort=True)
def is_int64_overflow_possible(shape: Shape) -> bool:
the_prod = 1
for x in shape:
the_prod *= int(x)
return the_prod >= lib.i8max
def _decons_group_index(
comp_labels: npt.NDArray[np.intp], shape: Shape
) -> list[npt.NDArray[np.intp]]:
# reconstruct labels
if is_int64_overflow_possible(shape):
# at some point group indices are factorized,
# and may not be deconstructed here! wrong path!
raise ValueError("cannot deconstruct factorized group indices!")
label_list = []
factor = 1
y = np.array(0)
x = comp_labels
for i in reversed(range(len(shape))):
labels = (x - y) % (factor * shape[i]) // factor
np.putmask(labels, comp_labels < 0, -1)
label_list.append(labels)
y = labels * factor
factor *= shape[i]
return label_list[::-1]
def decons_obs_group_ids(
comp_ids: npt.NDArray[np.intp],
obs_ids: npt.NDArray[np.intp],
shape: Shape,
labels: Sequence[npt.NDArray[np.signedinteger]],
xnull: bool,
) -> list[npt.NDArray[np.intp]]:
"""
Reconstruct labels from observed group ids.
Parameters
----------
comp_ids : np.ndarray[np.intp]
obs_ids: np.ndarray[np.intp]
shape : tuple[int]
labels : Sequence[np.ndarray[np.signedinteger]]
xnull : bool
If nulls are excluded; i.e. -1 labels are passed through.
"""
if not xnull:
lift = np.fromiter(((a == -1).any() for a in labels), dtype=np.intp)
arr_shape = np.asarray(shape, dtype=np.intp) + lift
shape = tuple(arr_shape)
if not is_int64_overflow_possible(shape):
# obs ids are deconstructable! take the fast route!
out = _decons_group_index(obs_ids, shape)
return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)]
indexer = unique_label_indices(comp_ids)
return [lab[indexer].astype(np.intp, subok=False, copy=True) for lab in labels]
def lexsort_indexer(
keys: Sequence[ArrayLike | Index | Series],
orders=None,
na_position: str = "last",
key: Callable | None = None,
codes_given: bool = False,
) -> npt.NDArray[np.intp]:
"""
Performs lexical sorting on a set of keys
Parameters
----------
keys : Sequence[ArrayLike | Index | Series]
Sequence of arrays to be sorted by the indexer
Sequence[Series] is only if key is not None.
orders : bool or list of booleans, optional
Determines the sorting order for each element in keys. If a list,
it must be the same length as keys. This determines whether the
corresponding element in keys should be sorted in ascending
(True) or descending (False) order. if bool, applied to all
elements as above. if None, defaults to True.
na_position : {'first', 'last'}, default 'last'
Determines placement of NA elements in the sorted list ("last" or "first")
key : Callable, optional
Callable key function applied to every element in keys before sorting
codes_given: bool, False
Avoid categorical materialization if codes are already provided.
Returns
-------
np.ndarray[np.intp]
"""
from pandas.core.arrays import Categorical
if na_position not in ["last", "first"]:
raise ValueError(f"invalid na_position: {na_position}")
if isinstance(orders, bool):
orders = [orders] * len(keys)
elif orders is None:
orders = [True] * len(keys)
labels = []
for k, order in zip(keys, orders):
k = ensure_key_mapped(k, key)
if codes_given:
codes = cast(np.ndarray, k)
n = codes.max() + 1 if len(codes) else 0
else:
cat = Categorical(k, ordered=True)
codes = cat.codes
n = len(cat.categories)
mask = codes == -1
if na_position == "last" and mask.any():
codes = np.where(mask, n, codes)
# not order means descending
if not order:
codes = np.where(mask, codes, n - codes - 1)
labels.append(codes)
return np.lexsort(labels[::-1])
def nargsort(
items: ArrayLike | Index | Series,
kind: SortKind = "quicksort",
ascending: bool = True,
na_position: str = "last",
key: Callable | None = None,
mask: npt.NDArray[np.bool_] | None = None,
) -> npt.NDArray[np.intp]:
"""
Intended to be a drop-in replacement for np.argsort which handles NaNs.
Adds ascending, na_position, and key parameters.
(GH #6399, #5231, #27237)
Parameters
----------
items : np.ndarray, ExtensionArray, Index, or Series
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
ascending : bool, default True
na_position : {'first', 'last'}, default 'last'
key : Optional[Callable], default None
mask : Optional[np.ndarray[bool]], default None
Passed when called by ExtensionArray.argsort.
Returns
-------
np.ndarray[np.intp]
"""
if key is not None:
# see TestDataFrameSortKey, TestRangeIndex::test_sort_values_key
items = ensure_key_mapped(items, key)
return nargsort(
items,
kind=kind,
ascending=ascending,
na_position=na_position,
key=None,
mask=mask,
)
if isinstance(items, ABCRangeIndex):
return items.argsort(ascending=ascending)
elif not isinstance(items, ABCMultiIndex):
items = extract_array(items)
else:
raise TypeError(
"nargsort does not support MultiIndex. Use index.sort_values instead."
)
if mask is None:
mask = np.asarray(isna(items))
if not isinstance(items, np.ndarray):
# i.e. ExtensionArray
return items.argsort(
ascending=ascending,
kind=kind,
na_position=na_position,
)
idx = np.arange(len(items))
non_nans = items[~mask]
non_nan_idx = idx[~mask]
nan_idx = np.nonzero(mask)[0]
if not ascending:
non_nans = non_nans[::-1]
non_nan_idx = non_nan_idx[::-1]
indexer = non_nan_idx[non_nans.argsort(kind=kind)]
if not ascending:
indexer = indexer[::-1]
# Finally, place the NaNs at the end or the beginning according to
# na_position
if na_position == "last":
indexer = np.concatenate([indexer, nan_idx])
elif na_position == "first":
indexer = np.concatenate([nan_idx, indexer])
else:
raise ValueError(f"invalid na_position: {na_position}")
return ensure_platform_int(indexer)
def nargminmax(values: ExtensionArray, method: str, axis: AxisInt = 0):
"""
Implementation of np.argmin/argmax but for ExtensionArray and which
handles missing values.
Parameters
----------
values : ExtensionArray
method : {"argmax", "argmin"}
axis : int, default 0
Returns
-------
int
"""
assert method in {"argmax", "argmin"}
func = np.argmax if method == "argmax" else np.argmin
mask = np.asarray(isna(values))
arr_values = values._values_for_argsort()
if arr_values.ndim > 1:
if mask.any():
if axis == 1:
zipped = zip(arr_values, mask)
else:
zipped = zip(arr_values.T, mask.T)
return np.array([_nanargminmax(v, m, func) for v, m in zipped])
return func(arr_values, axis=axis)
return _nanargminmax(arr_values, mask, func)
def _nanargminmax(values: np.ndarray, mask: npt.NDArray[np.bool_], func) -> int:
"""
See nanargminmax.__doc__.
"""
idx = np.arange(values.shape[0])
non_nans = values[~mask]
non_nan_idx = idx[~mask]
return non_nan_idx[func(non_nans)]
def _ensure_key_mapped_multiindex(
index: MultiIndex, key: Callable, level=None
) -> MultiIndex:
"""
Returns a new MultiIndex in which key has been applied
to all levels specified in level (or all levels if level
is None). Used for key sorting for MultiIndex.
Parameters
----------
index : MultiIndex
Index to which to apply the key function on the
specified levels.
key : Callable
Function that takes an Index and returns an Index of
the same shape. This key is applied to each level
separately. The name of the level can be used to
distinguish different levels for application.
level : list-like, int or str, default None
Level or list of levels to apply the key function to.
If None, key function is applied to all levels. Other
levels are left unchanged.
Returns
-------
labels : MultiIndex
Resulting MultiIndex with modified levels.
"""
if level is not None:
if isinstance(level, (str, int)):
level_iter = [level]
else:
level_iter = level
sort_levels: range | set = {index._get_level_number(lev) for lev in level_iter}
else:
sort_levels = range(index.nlevels)
mapped = [
ensure_key_mapped(index._get_level_values(level), key)
if level in sort_levels
else index._get_level_values(level)
for level in range(index.nlevels)
]
return type(index).from_arrays(mapped)
def ensure_key_mapped(
values: ArrayLike | Index | Series, key: Callable | None, levels=None
) -> ArrayLike | Index | Series:
"""
Applies a callable key function to the values function and checks
that the resulting value has the same shape. Can be called on Index
subclasses, Series, DataFrames, or ndarrays.
Parameters
----------
values : Series, DataFrame, Index subclass, or ndarray
key : Optional[Callable], key to be called on the values array
levels : Optional[List], if values is a MultiIndex, list of levels to
apply the key to.
"""
from pandas.core.indexes.api import Index
if not key:
return values
if isinstance(values, ABCMultiIndex):
return _ensure_key_mapped_multiindex(values, key, level=levels)
result = key(values.copy())
if len(result) != len(values):
raise ValueError(
"User-provided `key` function must not change the shape of the array."
)
try:
if isinstance(
values, Index
): # convert to a new Index subclass, not necessarily the same
result = Index(result)
else:
# try to revert to original type otherwise
type_of_values = type(values)
# error: Too many arguments for "ExtensionArray"
result = type_of_values(result) # type: ignore[call-arg]
except TypeError as err:
raise TypeError(
f"User-provided `key` function returned an invalid type {type(result)} \
which could not be converted to {type(values)}."
) from err
return result
def get_indexer_dict(
label_list: list[np.ndarray], keys: list[Index]
) -> dict[Hashable, npt.NDArray[np.intp]]:
"""
Returns
-------
dict:
Labels mapped to indexers.
"""
shape = tuple(len(x) for x in keys)
group_index = get_group_index(label_list, shape, sort=True, xnull=True)
if np.all(group_index == -1):
# Short-circuit, lib.indices_fast will return the same
return {}
ngroups = (
((group_index.size and group_index.max()) + 1)
if is_int64_overflow_possible(shape)
else np.prod(shape, dtype="i8")
)
sorter = get_group_index_sorter(group_index, ngroups)
sorted_labels = [lab.take(sorter) for lab in label_list]
group_index = group_index.take(sorter)
return lib.indices_fast(sorter, group_index, keys, sorted_labels)
# ----------------------------------------------------------------------
# sorting levels...cleverly?
def get_group_index_sorter(
group_index: npt.NDArray[np.intp], ngroups: int | None = None
) -> npt.NDArray[np.intp]:
"""
algos.groupsort_indexer implements `counting sort` and it is at least
O(ngroups), where
ngroups = prod(shape)
shape = map(len, keys)
that is, linear in the number of combinations (cartesian product) of unique
values of groupby keys. This can be huge when doing multi-key groupby.
np.argsort(kind='mergesort') is O(count x log(count)) where count is the
length of the data-frame;
Both algorithms are `stable` sort and that is necessary for correctness of
groupby operations. e.g. consider:
df.groupby(key)[col].transform('first')
Parameters
----------
group_index : np.ndarray[np.intp]
signed integer dtype
ngroups : int or None, default None
Returns
-------
np.ndarray[np.intp]
"""
if ngroups is None:
ngroups = 1 + group_index.max()
count = len(group_index)
alpha = 0.0 # taking complexities literally; there may be
beta = 1.0 # some room for fine-tuning these parameters
do_groupsort = count > 0 and ((alpha + beta * ngroups) < (count * np.log(count)))
if do_groupsort:
sorter, _ = algos.groupsort_indexer(
ensure_platform_int(group_index),
ngroups,
)
# sorter _should_ already be intp, but mypy is not yet able to verify
else:
sorter = group_index.argsort(kind="mergesort")
return ensure_platform_int(sorter)
def compress_group_index(
group_index: npt.NDArray[np.int64], sort: bool = True
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]:
"""
Group_index is offsets into cartesian product of all possible labels. This
space can be huge, so this function compresses it, by computing offsets
(comp_ids) into the list of unique labels (obs_group_ids).
"""
if len(group_index) and np.all(group_index[1:] >= group_index[:-1]):
# GH 53806: fast path for sorted group_index
unique_mask = np.concatenate(
[group_index[:1] > -1, group_index[1:] != group_index[:-1]]
)
comp_ids = unique_mask.cumsum()
comp_ids -= 1
obs_group_ids = group_index[unique_mask]
else:
size_hint = len(group_index)
table = hashtable.Int64HashTable(size_hint)
group_index = ensure_int64(group_index)
# note, group labels come out ascending (ie, 1,2,3 etc)
comp_ids, obs_group_ids = table.get_labels_groupby(group_index)
if sort and len(obs_group_ids) > 0:
obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids)
return ensure_int64(comp_ids), ensure_int64(obs_group_ids)
def _reorder_by_uniques(
uniques: npt.NDArray[np.int64], labels: npt.NDArray[np.intp]
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.intp]]:
"""
Parameters
----------
uniques : np.ndarray[np.int64]
labels : np.ndarray[np.intp]
Returns
-------
np.ndarray[np.int64]
np.ndarray[np.intp]
"""
# sorter is index where elements ought to go
sorter = uniques.argsort()
# reverse_indexer is where elements came from
reverse_indexer = np.empty(len(sorter), dtype=np.intp)
reverse_indexer.put(sorter, np.arange(len(sorter)))
mask = labels < 0
# move labels to right locations (ie, unsort ascending labels)
labels = reverse_indexer.take(labels)
np.putmask(labels, mask, -1)
# sort observed ids
uniques = uniques.take(sorter)
return uniques, labels