forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_sort_index.py
954 lines (806 loc) · 31.6 KB
/
test_sort_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
import numpy as np
import pytest
import pandas as pd
from pandas import (
CategoricalDtype,
CategoricalIndex,
DataFrame,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
Timestamp,
)
import pandas._testing as tm
class TestDataFrameSortIndex:
def test_sort_index_and_reconstruction_doc_example(self):
# doc example
df = DataFrame(
{"value": [1, 2, 3, 4]},
index=MultiIndex(
levels=[["a", "b"], ["bb", "aa"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
assert df.index._is_lexsorted()
assert not df.index.is_monotonic
# sort it
expected = DataFrame(
{"value": [2, 1, 4, 3]},
index=MultiIndex(
levels=[["a", "b"], ["aa", "bb"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
result = df.sort_index()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# reconstruct
result = df.sort_index().copy()
result.index = result.index._sort_levels_monotonic()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
def test_sort_index_non_existent_label_multiindex(self):
# GH#12261
df = DataFrame(0, columns=[], index=MultiIndex.from_product([[], []]))
df.loc["b", "2"] = 1
df.loc["a", "3"] = 1
result = df.sort_index().index.is_monotonic
assert result is True
def test_sort_index_reorder_on_ops(self):
# GH#15687
df = DataFrame(
np.random.randn(8, 2),
index=MultiIndex.from_product(
[["a", "b"], ["big", "small"], ["red", "blu"]],
names=["letter", "size", "color"],
),
columns=["near", "far"],
)
df = df.sort_index()
def my_func(group):
group.index = ["newz", "newa"]
return group
result = df.groupby(level=["letter", "size"]).apply(my_func).sort_index()
expected = MultiIndex.from_product(
[["a", "b"], ["big", "small"], ["newa", "newz"]],
names=["letter", "size", None],
)
tm.assert_index_equal(result.index, expected)
def test_sort_index_nan_multiindex(self):
# GH#14784
# incorrect sorting w.r.t. nans
tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]]
mi = MultiIndex.from_tuples(tuples)
df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list("ABCD"))
s = Series(np.arange(4), index=mi)
df2 = DataFrame(
{
"date": pd.DatetimeIndex(
[
"20121002",
"20121007",
"20130130",
"20130202",
"20130305",
"20121002",
"20121207",
"20130130",
"20130202",
"20130305",
"20130202",
"20130305",
]
),
"user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5],
"whole_cost": [
1790,
np.nan,
280,
259,
np.nan,
623,
90,
312,
np.nan,
301,
359,
801,
],
"cost": [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12],
}
).set_index(["date", "user_id"])
# sorting frame, default nan position is last
result = df.sort_index()
expected = df.iloc[[3, 0, 2, 1], :]
tm.assert_frame_equal(result, expected)
# sorting frame, nan position last
result = df.sort_index(na_position="last")
expected = df.iloc[[3, 0, 2, 1], :]
tm.assert_frame_equal(result, expected)
# sorting frame, nan position first
result = df.sort_index(na_position="first")
expected = df.iloc[[1, 2, 3, 0], :]
tm.assert_frame_equal(result, expected)
# sorting frame with removed rows
result = df2.dropna().sort_index()
expected = df2.sort_index().dropna()
tm.assert_frame_equal(result, expected)
# sorting series, default nan position is last
result = s.sort_index()
expected = s.iloc[[3, 0, 2, 1]]
tm.assert_series_equal(result, expected)
# sorting series, nan position last
result = s.sort_index(na_position="last")
expected = s.iloc[[3, 0, 2, 1]]
tm.assert_series_equal(result, expected)
# sorting series, nan position first
result = s.sort_index(na_position="first")
expected = s.iloc[[1, 2, 3, 0]]
tm.assert_series_equal(result, expected)
def test_sort_index_nan(self):
# GH#3917
# Test DataFrame with nan label
df = DataFrame(
{"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]},
index=[1, 2, 3, 4, 5, 6, np.nan],
)
# NaN label, ascending=True, na_position='last'
sorted_df = df.sort_index(kind="quicksort", ascending=True, na_position="last")
expected = DataFrame(
{"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]},
index=[1, 2, 3, 4, 5, 6, np.nan],
)
tm.assert_frame_equal(sorted_df, expected)
# NaN label, ascending=True, na_position='first'
sorted_df = df.sort_index(na_position="first")
expected = DataFrame(
{"A": [4, 1, 2, np.nan, 1, 6, 8], "B": [5, 9, np.nan, 5, 2, 5, 4]},
index=[np.nan, 1, 2, 3, 4, 5, 6],
)
tm.assert_frame_equal(sorted_df, expected)
# NaN label, ascending=False, na_position='last'
sorted_df = df.sort_index(kind="quicksort", ascending=False)
expected = DataFrame(
{"A": [8, 6, 1, np.nan, 2, 1, 4], "B": [4, 5, 2, 5, np.nan, 9, 5]},
index=[6, 5, 4, 3, 2, 1, np.nan],
)
tm.assert_frame_equal(sorted_df, expected)
# NaN label, ascending=False, na_position='first'
sorted_df = df.sort_index(
kind="quicksort", ascending=False, na_position="first"
)
expected = DataFrame(
{"A": [4, 8, 6, 1, np.nan, 2, 1], "B": [5, 4, 5, 2, 5, np.nan, 9]},
index=[np.nan, 6, 5, 4, 3, 2, 1],
)
tm.assert_frame_equal(sorted_df, expected)
def test_sort_index_multi_index(self):
# GH#25775, testing that sorting by index works with a multi-index.
df = DataFrame(
{"a": [3, 1, 2], "b": [0, 0, 0], "c": [0, 1, 2], "d": list("abc")}
)
result = df.set_index(list("abc")).sort_index(level=list("ba"))
expected = DataFrame(
{"a": [1, 2, 3], "b": [0, 0, 0], "c": [1, 2, 0], "d": list("bca")}
)
expected = expected.set_index(list("abc"))
tm.assert_frame_equal(result, expected)
def test_sort_index_inplace(self):
frame = DataFrame(
np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"]
)
# axis=0
unordered = frame.loc[[3, 2, 4, 1]]
a_values = unordered["A"]._values
df = unordered.copy()
return_value = df.sort_index(inplace=True)
assert return_value is None
expected = frame
tm.assert_frame_equal(df, expected)
# GH 44153 related
# Used to be a_id != id(df["A"]), but flaky in the CI
assert not np.shares_memory(a_values, df["A"]._values)
df = unordered.copy()
return_value = df.sort_index(ascending=False, inplace=True)
assert return_value is None
expected = frame[::-1]
tm.assert_frame_equal(df, expected)
# axis=1
unordered = frame.loc[:, ["D", "B", "C", "A"]]
df = unordered.copy()
return_value = df.sort_index(axis=1, inplace=True)
assert return_value is None
expected = frame
tm.assert_frame_equal(df, expected)
df = unordered.copy()
return_value = df.sort_index(axis=1, ascending=False, inplace=True)
assert return_value is None
expected = frame.iloc[:, ::-1]
tm.assert_frame_equal(df, expected)
def test_sort_index_different_sortorder(self):
A = np.arange(20).repeat(5)
B = np.tile(np.arange(5), 20)
indexer = np.random.permutation(100)
A = A.take(indexer)
B = B.take(indexer)
df = DataFrame({"A": A, "B": B, "C": np.random.randn(100)})
ex_indexer = np.lexsort((df.B.max() - df.B, df.A))
expected = df.take(ex_indexer)
# test with multiindex, too
idf = df.set_index(["A", "B"])
result = idf.sort_index(ascending=[1, 0])
expected = idf.take(ex_indexer)
tm.assert_frame_equal(result, expected)
# also, Series!
result = idf["C"].sort_index(ascending=[1, 0])
tm.assert_series_equal(result, expected["C"])
def test_sort_index_level(self):
mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC"))
df = DataFrame([[1, 2], [3, 4]], mi)
result = df.sort_index(level="A", sort_remaining=False)
expected = df
tm.assert_frame_equal(result, expected)
result = df.sort_index(level=["A", "B"], sort_remaining=False)
expected = df
tm.assert_frame_equal(result, expected)
# Error thrown by sort_index when
# first index is sorted last (GH#26053)
result = df.sort_index(level=["C", "B", "A"])
expected = df.iloc[[1, 0]]
tm.assert_frame_equal(result, expected)
result = df.sort_index(level=["B", "C", "A"])
expected = df.iloc[[1, 0]]
tm.assert_frame_equal(result, expected)
result = df.sort_index(level=["C", "A"])
expected = df.iloc[[1, 0]]
tm.assert_frame_equal(result, expected)
def test_sort_index_categorical_index(self):
df = DataFrame(
{
"A": np.arange(6, dtype="int64"),
"B": Series(list("aabbca")).astype(CategoricalDtype(list("cab"))),
}
).set_index("B")
result = df.sort_index()
expected = df.iloc[[4, 0, 1, 5, 2, 3]]
tm.assert_frame_equal(result, expected)
result = df.sort_index(ascending=False)
expected = df.iloc[[2, 3, 0, 1, 5, 4]]
tm.assert_frame_equal(result, expected)
def test_sort_index(self):
# GH#13496
frame = DataFrame(
np.arange(16).reshape(4, 4),
index=[1, 2, 3, 4],
columns=["A", "B", "C", "D"],
)
# axis=0 : sort rows by index labels
unordered = frame.loc[[3, 2, 4, 1]]
result = unordered.sort_index(axis=0)
expected = frame
tm.assert_frame_equal(result, expected)
result = unordered.sort_index(ascending=False)
expected = frame[::-1]
tm.assert_frame_equal(result, expected)
# axis=1 : sort columns by column names
unordered = frame.iloc[:, [2, 1, 3, 0]]
result = unordered.sort_index(axis=1)
tm.assert_frame_equal(result, frame)
result = unordered.sort_index(axis=1, ascending=False)
expected = frame.iloc[:, ::-1]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("level", ["A", 0]) # GH#21052
def test_sort_index_multiindex(self, level):
# GH#13496
# sort rows by specified level of multi-index
mi = MultiIndex.from_tuples(
[[2, 1, 3], [2, 1, 2], [1, 1, 1]], names=list("ABC")
)
df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mi)
expected_mi = MultiIndex.from_tuples(
[[1, 1, 1], [2, 1, 2], [2, 1, 3]], names=list("ABC")
)
expected = DataFrame([[5, 6], [3, 4], [1, 2]], index=expected_mi)
result = df.sort_index(level=level)
tm.assert_frame_equal(result, expected)
# sort_remaining=False
expected_mi = MultiIndex.from_tuples(
[[1, 1, 1], [2, 1, 3], [2, 1, 2]], names=list("ABC")
)
expected = DataFrame([[5, 6], [1, 2], [3, 4]], index=expected_mi)
result = df.sort_index(level=level, sort_remaining=False)
tm.assert_frame_equal(result, expected)
def test_sort_index_intervalindex(self):
# this is a de-facto sort via unstack
# confirming that we sort in the order of the bins
y = Series(np.random.randn(100))
x1 = Series(np.sign(np.random.randn(100)))
x2 = pd.cut(Series(np.random.randn(100)), bins=[-3, -0.5, 0, 0.5, 3])
model = pd.concat([y, x1, x2], axis=1, keys=["Y", "X1", "X2"])
result = model.groupby(["X1", "X2"], observed=True).mean().unstack()
expected = IntervalIndex.from_tuples(
[(-3.0, -0.5), (-0.5, 0.0), (0.0, 0.5), (0.5, 3.0)], closed="right"
)
result = result.columns.levels[1].categories
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize(
"original_dict, sorted_dict, ascending, ignore_index, output_index",
[
({"A": [1, 2, 3]}, {"A": [2, 3, 1]}, False, True, [0, 1, 2]),
({"A": [1, 2, 3]}, {"A": [1, 3, 2]}, True, True, [0, 1, 2]),
({"A": [1, 2, 3]}, {"A": [2, 3, 1]}, False, False, [5, 3, 2]),
({"A": [1, 2, 3]}, {"A": [1, 3, 2]}, True, False, [2, 3, 5]),
],
)
def test_sort_index_ignore_index(
self, inplace, original_dict, sorted_dict, ascending, ignore_index, output_index
):
# GH 30114
original_index = [2, 5, 3]
df = DataFrame(original_dict, index=original_index)
expected_df = DataFrame(sorted_dict, index=output_index)
kwargs = {
"ascending": ascending,
"ignore_index": ignore_index,
"inplace": inplace,
}
if inplace:
result_df = df.copy()
result_df.sort_index(**kwargs)
else:
result_df = df.sort_index(**kwargs)
tm.assert_frame_equal(result_df, expected_df)
tm.assert_frame_equal(df, DataFrame(original_dict, index=original_index))
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("ignore_index", [True, False])
def test_respect_ignore_index(self, inplace, ignore_index):
# GH 43591
df = DataFrame({"a": [1, 2, 3]}, index=RangeIndex(4, -1, -2))
result = df.sort_index(
ascending=False, ignore_index=ignore_index, inplace=inplace
)
if inplace:
result = df
if ignore_index:
expected = DataFrame({"a": [1, 2, 3]})
else:
expected = DataFrame({"a": [1, 2, 3]}, index=RangeIndex(4, -1, -2))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize(
"original_dict, sorted_dict, ascending, ignore_index, output_index",
[
(
{"M1": [1, 2], "M2": [3, 4]},
{"M1": [1, 2], "M2": [3, 4]},
True,
True,
[0, 1],
),
(
{"M1": [1, 2], "M2": [3, 4]},
{"M1": [2, 1], "M2": [4, 3]},
False,
True,
[0, 1],
),
(
{"M1": [1, 2], "M2": [3, 4]},
{"M1": [1, 2], "M2": [3, 4]},
True,
False,
MultiIndex.from_tuples([(2, 1), (3, 4)], names=list("AB")),
),
(
{"M1": [1, 2], "M2": [3, 4]},
{"M1": [2, 1], "M2": [4, 3]},
False,
False,
MultiIndex.from_tuples([(3, 4), (2, 1)], names=list("AB")),
),
],
)
def test_sort_index_ignore_index_multi_index(
self, inplace, original_dict, sorted_dict, ascending, ignore_index, output_index
):
# GH 30114, this is to test ignore_index on MulitIndex of index
mi = MultiIndex.from_tuples([(2, 1), (3, 4)], names=list("AB"))
df = DataFrame(original_dict, index=mi)
expected_df = DataFrame(sorted_dict, index=output_index)
kwargs = {
"ascending": ascending,
"ignore_index": ignore_index,
"inplace": inplace,
}
if inplace:
result_df = df.copy()
result_df.sort_index(**kwargs)
else:
result_df = df.sort_index(**kwargs)
tm.assert_frame_equal(result_df, expected_df)
tm.assert_frame_equal(df, DataFrame(original_dict, index=mi))
def test_sort_index_categorical_multiindex(self):
# GH#15058
df = DataFrame(
{
"a": range(6),
"l1": pd.Categorical(
["a", "a", "b", "b", "c", "c"],
categories=["c", "a", "b"],
ordered=True,
),
"l2": [0, 1, 0, 1, 0, 1],
}
)
result = df.set_index(["l1", "l2"]).sort_index()
expected = DataFrame(
[4, 5, 0, 1, 2, 3],
columns=["a"],
index=MultiIndex(
levels=[
CategoricalIndex(
["c", "a", "b"],
categories=["c", "a", "b"],
ordered=True,
name="l1",
dtype="category",
),
[0, 1],
],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=["l1", "l2"],
),
)
tm.assert_frame_equal(result, expected)
def test_sort_index_and_reconstruction(self):
# GH#15622
# lexsortedness should be identical
# across MultiIndex construction methods
df = DataFrame([[1, 1], [2, 2]], index=list("ab"))
expected = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_tuples(
[(0.5, "a"), (0.5, "b"), (0.8, "a"), (0.8, "b")]
),
)
assert expected.index._is_lexsorted()
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_product([[0.5, 0.8], list("ab")]),
)
result = result.sort_index()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex(
levels=[[0.5, 0.8], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]
),
)
result = result.sort_index()
assert result.index._is_lexsorted()
tm.assert_frame_equal(result, expected)
concatted = pd.concat([df, df], keys=[0.8, 0.5])
result = concatted.sort_index()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# GH#14015
df = DataFrame(
[[1, 2], [6, 7]],
columns=MultiIndex.from_tuples(
[(0, "20160811 12:00:00"), (0, "20160809 12:00:00")],
names=["l1", "Date"],
),
)
df.columns = df.columns.set_levels(
pd.to_datetime(df.columns.levels[1]), level=1
)
assert not df.columns.is_monotonic
result = df.sort_index(axis=1)
assert result.columns.is_monotonic
result = df.sort_index(axis=1, level=1)
assert result.columns.is_monotonic
# TODO: better name, de-duplicate with test_sort_index_level above
def test_sort_index_level2(self):
mi = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
frame = DataFrame(
np.random.randn(10, 3),
index=mi,
columns=Index(["A", "B", "C"], name="exp"),
)
df = frame.copy()
df.index = np.arange(len(df))
# axis=1
# series
a_sorted = frame["A"].sort_index(level=0)
# preserve names
assert a_sorted.index.names == frame.index.names
# inplace
rs = frame.copy()
return_value = rs.sort_index(level=0, inplace=True)
assert return_value is None
tm.assert_frame_equal(rs, frame.sort_index(level=0))
def test_sort_index_level_large_cardinality(self):
# GH#2684 (int64)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000).astype("int64"), index=index)
# it works!
result = df.sort_index(level=0)
assert result.index._lexsort_depth == 3
# GH#2684 (int32)
index = MultiIndex.from_arrays([np.arange(4000)] * 3)
df = DataFrame(np.random.randn(4000).astype("int32"), index=index)
# it works!
result = df.sort_index(level=0)
assert (result.dtypes.values == df.dtypes.values).all()
assert result.index._lexsort_depth == 3
def test_sort_index_level_by_name(self):
mi = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
frame = DataFrame(
np.random.randn(10, 3),
index=mi,
columns=Index(["A", "B", "C"], name="exp"),
)
frame.index.names = ["first", "second"]
result = frame.sort_index(level="second")
expected = frame.sort_index(level=1)
tm.assert_frame_equal(result, expected)
def test_sort_index_level_mixed(self):
mi = MultiIndex(
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=["first", "second"],
)
frame = DataFrame(
np.random.randn(10, 3),
index=mi,
columns=Index(["A", "B", "C"], name="exp"),
)
sorted_before = frame.sort_index(level=1)
df = frame.copy()
df["foo"] = "bar"
sorted_after = df.sort_index(level=1)
tm.assert_frame_equal(sorted_before, sorted_after.drop(["foo"], axis=1))
dft = frame.T
sorted_before = dft.sort_index(level=1, axis=1)
dft["foo", "three"] = "bar"
sorted_after = dft.sort_index(level=1, axis=1)
tm.assert_frame_equal(
sorted_before.drop([("foo", "three")], axis=1),
sorted_after.drop([("foo", "three")], axis=1),
)
def test_sort_index_preserve_levels(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
result = frame.sort_index()
assert result.index.names == frame.index.names
@pytest.mark.parametrize(
"gen,extra",
[
([1.0, 3.0, 2.0, 5.0], 4.0),
([1, 3, 2, 5], 4),
(
[
Timestamp("20130101"),
Timestamp("20130103"),
Timestamp("20130102"),
Timestamp("20130105"),
],
Timestamp("20130104"),
),
(["1one", "3one", "2one", "5one"], "4one"),
],
)
def test_sort_index_multilevel_repr_8017(self, gen, extra):
np.random.seed(0)
data = np.random.randn(3, 4)
columns = MultiIndex.from_tuples([("red", i) for i in gen])
df = DataFrame(data, index=list("def"), columns=columns)
df2 = pd.concat(
[
df,
DataFrame(
"world",
index=list("def"),
columns=MultiIndex.from_tuples([("red", extra)]),
),
],
axis=1,
)
# check that the repr is good
# make sure that we have a correct sparsified repr
# e.g. only 1 header of read
assert str(df2).splitlines()[0].split() == ["red"]
# GH 8017
# sorting fails after columns added
# construct single-dtype then sort
result = df.copy().sort_index(axis=1)
expected = df.iloc[:, [0, 2, 1, 3]]
tm.assert_frame_equal(result, expected)
result = df2.sort_index(axis=1)
expected = df2.iloc[:, [0, 2, 1, 4, 3]]
tm.assert_frame_equal(result, expected)
# setitem then sort
result = df.copy()
result[("red", extra)] = "world"
result = result.sort_index(axis=1)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"categories",
[
pytest.param(["a", "b", "c"], id="str"),
pytest.param(
[pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(2, 3)],
id="pd.Interval",
),
],
)
def test_sort_index_with_categories(self, categories):
# GH#23452
df = DataFrame(
{"foo": range(len(categories))},
index=CategoricalIndex(
data=categories, categories=categories, ordered=True
),
)
df.index = df.index.reorder_categories(df.index.categories[::-1])
result = df.sort_index()
expected = DataFrame(
{"foo": reversed(range(len(categories)))},
index=CategoricalIndex(
data=categories[::-1], categories=categories[::-1], ordered=True
),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ascending",
[
None,
[True, None],
[False, "True"],
],
)
def test_sort_index_ascending_bad_value_raises(self, ascending):
# GH 39434
df = DataFrame(np.arange(64))
length = len(df.index)
df.index = [(i - length / 2) % length for i in range(length)]
match = 'For argument "ascending" expected type bool'
with pytest.raises(ValueError, match=match):
df.sort_index(axis=0, ascending=ascending, na_position="first")
def test_sort_index_use_inf_as_na(self):
# GH 29687
expected = DataFrame(
{"col1": [1, 2, 3], "col2": [3, 4, 5]},
index=pd.date_range("2020", periods=3),
)
with pd.option_context("mode.use_inf_as_na", True):
result = expected.sort_index()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ascending",
[(True, False), [True, False]],
)
def test_sort_index_ascending_tuple(self, ascending):
df = DataFrame(
{
"legs": [4, 2, 4, 2, 2],
},
index=MultiIndex.from_tuples(
[
("mammal", "dog"),
("bird", "duck"),
("mammal", "horse"),
("bird", "penguin"),
("mammal", "kangaroo"),
],
names=["class", "animal"],
),
)
# parameter `ascending`` is a tuple
result = df.sort_index(level=(0, 1), ascending=ascending)
expected = DataFrame(
{
"legs": [2, 2, 2, 4, 4],
},
index=MultiIndex.from_tuples(
[
("bird", "penguin"),
("bird", "duck"),
("mammal", "kangaroo"),
("mammal", "horse"),
("mammal", "dog"),
],
names=["class", "animal"],
),
)
tm.assert_frame_equal(result, expected)
class TestDataFrameSortIndexKey:
def test_sort_multi_index_key(self):
# GH 25775, testing that sorting by index works with a multi-index.
df = DataFrame(
{"a": [3, 1, 2], "b": [0, 0, 0], "c": [0, 1, 2], "d": list("abc")}
).set_index(list("abc"))
result = df.sort_index(level=list("ac"), key=lambda x: x)
expected = DataFrame(
{"a": [1, 2, 3], "b": [0, 0, 0], "c": [1, 2, 0], "d": list("bca")}
).set_index(list("abc"))
tm.assert_frame_equal(result, expected)
result = df.sort_index(level=list("ac"), key=lambda x: -x)
expected = DataFrame(
{"a": [3, 2, 1], "b": [0, 0, 0], "c": [0, 2, 1], "d": list("acb")}
).set_index(list("abc"))
tm.assert_frame_equal(result, expected)
def test_sort_index_key(self): # issue 27237
df = DataFrame(np.arange(6, dtype="int64"), index=list("aaBBca"))
result = df.sort_index()
expected = df.iloc[[2, 3, 0, 1, 5, 4]]
tm.assert_frame_equal(result, expected)
result = df.sort_index(key=lambda x: x.str.lower())
expected = df.iloc[[0, 1, 5, 2, 3, 4]]
tm.assert_frame_equal(result, expected)
result = df.sort_index(key=lambda x: x.str.lower(), ascending=False)
expected = df.iloc[[4, 2, 3, 0, 1, 5]]
tm.assert_frame_equal(result, expected)
def test_sort_index_key_int(self):
df = DataFrame(np.arange(6, dtype="int64"), index=np.arange(6, dtype="int64"))
result = df.sort_index()
tm.assert_frame_equal(result, df)
result = df.sort_index(key=lambda x: -x)
expected = df.sort_index(ascending=False)
tm.assert_frame_equal(result, expected)
result = df.sort_index(key=lambda x: 2 * x)
tm.assert_frame_equal(result, df)
def test_sort_multi_index_key_str(self):
# GH 25775, testing that sorting by index works with a multi-index.
df = DataFrame(
{"a": ["B", "a", "C"], "b": [0, 1, 0], "c": list("abc"), "d": [0, 1, 2]}
).set_index(list("abc"))
result = df.sort_index(level="a", key=lambda x: x.str.lower())
expected = DataFrame(
{"a": ["a", "B", "C"], "b": [1, 0, 0], "c": list("bac"), "d": [1, 0, 2]}
).set_index(list("abc"))
tm.assert_frame_equal(result, expected)
result = df.sort_index(
level=list("abc"), # can refer to names
key=lambda x: x.str.lower() if x.name in ["a", "c"] else -x,
)
expected = DataFrame(
{"a": ["a", "B", "C"], "b": [1, 0, 0], "c": list("bac"), "d": [1, 0, 2]}
).set_index(list("abc"))
tm.assert_frame_equal(result, expected)
def test_changes_length_raises(self):
df = DataFrame({"A": [1, 2, 3]})
with pytest.raises(ValueError, match="change the shape"):
df.sort_index(key=lambda x: x[:1])
def test_sort_index_multiindex_sparse_column(self):
# GH 29735, testing that sort_index on a multiindexed frame with sparse
# columns fills with 0.
expected = DataFrame(
{
i: pd.array([0.0, 0.0, 0.0, 0.0], dtype=pd.SparseDtype("float64", 0.0))
for i in range(0, 4)
},
index=MultiIndex.from_product([[1, 2], [1, 2]]),
)
result = expected.sort_index(level=0)
tm.assert_frame_equal(result, expected)
def test_sort_index_pos_args_deprecation(self):
# https://github.com/pandas-dev/pandas/issues/41485
df = DataFrame({"a": [1, 2, 3]})
msg = (
r"In a future version of pandas all arguments of DataFrame.sort_index "
r"will be keyword-only"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.sort_index(1)
expected = DataFrame({"a": [1, 2, 3]})
tm.assert_frame_equal(result, expected)