forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtslib.pyx
830 lines (701 loc) · 28.8 KB
/
tslib.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# -*- coding: utf-8 -*-
import cython
from cpython.datetime cimport (PyDateTime_Check, PyDate_Check,
PyDateTime_CheckExact,
PyDateTime_IMPORT,
timedelta, datetime, date, time)
# import datetime C API
PyDateTime_IMPORT
cimport numpy as cnp
from numpy cimport int64_t, ndarray, float64_t
import numpy as np
cnp.import_array()
import pytz
from pandas._libs.util cimport (
is_integer_object, is_float_object, is_string_object, is_datetime64_object)
from pandas._libs.tslibs.np_datetime cimport (
check_dts_bounds, npy_datetimestruct, _string_to_dts, dt64_to_dtstruct,
dtstruct_to_dt64, pydatetime_to_dt64, pydate_to_dt64, get_datetime64_value)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.parsing import parse_datetime_string
from pandas._libs.tslibs.timedeltas cimport cast_from_unit
from pandas._libs.tslibs.timezones cimport is_utc, is_tzlocal, get_dst_info
from pandas._libs.tslibs.timezones import UTC
from pandas._libs.tslibs.conversion cimport (
tz_convert_single, _TSObject, convert_datetime_to_tsobject,
get_datetime64_nanos, tz_convert_utc_to_tzlocal)
# many modules still look for NaT and iNaT here despite them not being needed
from pandas._libs.tslibs.nattype import nat_strings, iNaT # noqa:F821
from pandas._libs.tslibs.nattype cimport (
checknull_with_nat, NPY_NAT, c_NaT as NaT)
from pandas._libs.tslibs.offsets cimport to_offset
from pandas._libs.tslibs.timestamps cimport create_timestamp_from_ts
from pandas._libs.tslibs.timestamps import Timestamp
cdef bint PY2 = str == bytes
cdef inline object create_datetime_from_ts(
int64_t value, npy_datetimestruct dts,
object tz, object freq):
""" convenience routine to construct a datetime.datetime from its parts """
return datetime(dts.year, dts.month, dts.day, dts.hour,
dts.min, dts.sec, dts.us, tz)
cdef inline object create_date_from_ts(
int64_t value, npy_datetimestruct dts,
object tz, object freq):
""" convenience routine to construct a datetime.date from its parts """
return date(dts.year, dts.month, dts.day)
cdef inline object create_time_from_ts(
int64_t value, npy_datetimestruct dts,
object tz, object freq):
""" convenience routine to construct a datetime.time from its parts """
return time(dts.hour, dts.min, dts.sec, dts.us, tz)
@cython.wraparound(False)
@cython.boundscheck(False)
def ints_to_pydatetime(int64_t[:] arr, object tz=None, object freq=None,
str box="datetime"):
"""
Convert an i8 repr to an ndarray of datetimes, date, time or Timestamp
Parameters
----------
arr : array of i8
tz : str, default None
convert to this timezone
freq : str/Offset, default None
freq to convert
box : {'datetime', 'timestamp', 'date', 'time'}, default 'datetime'
If datetime, convert to datetime.datetime
If date, convert to datetime.date
If time, convert to datetime.time
If Timestamp, convert to pandas.Timestamp
Returns
-------
result : array of dtype specified by box
"""
cdef:
Py_ssize_t i, n = len(arr)
ndarray[int64_t] trans
int64_t[:] deltas
Py_ssize_t pos
npy_datetimestruct dts
object dt, new_tz
str typ
int64_t value, delta, local_value
ndarray[object] result = np.empty(n, dtype=object)
object (*func_create)(int64_t, npy_datetimestruct, object, object)
if box == "date":
assert (tz is None), "tz should be None when converting to date"
func_create = create_date_from_ts
elif box == "timestamp":
func_create = create_timestamp_from_ts
if is_string_object(freq):
freq = to_offset(freq)
elif box == "time":
func_create = create_time_from_ts
elif box == "datetime":
func_create = create_datetime_from_ts
else:
raise ValueError("box must be one of 'datetime', 'date', 'time' or"
" 'timestamp'")
if is_utc(tz) or tz is None:
for i in range(n):
value = arr[i]
if value == NPY_NAT:
result[i] = NaT
else:
dt64_to_dtstruct(value, &dts)
result[i] = func_create(value, dts, tz, freq)
elif is_tzlocal(tz):
for i in range(n):
value = arr[i]
if value == NPY_NAT:
result[i] = NaT
else:
# Python datetime objects do not support nanosecond
# resolution (yet, PEP 564). Need to compute new value
# using the i8 representation.
local_value = tz_convert_utc_to_tzlocal(value, tz)
dt64_to_dtstruct(local_value, &dts)
result[i] = func_create(value, dts, tz, freq)
else:
trans, deltas, typ = get_dst_info(tz)
if typ not in ['pytz', 'dateutil']:
# static/fixed; in this case we know that len(delta) == 1
delta = deltas[0]
for i in range(n):
value = arr[i]
if value == NPY_NAT:
result[i] = NaT
else:
# Adjust datetime64 timestamp, recompute datetimestruct
dt64_to_dtstruct(value + delta, &dts)
result[i] = func_create(value, dts, tz, freq)
elif typ == 'dateutil':
# no zone-name change for dateutil tzs - dst etc
# represented in single object.
for i in range(n):
value = arr[i]
if value == NPY_NAT:
result[i] = NaT
else:
# Adjust datetime64 timestamp, recompute datetimestruct
pos = trans.searchsorted(value, side='right') - 1
dt64_to_dtstruct(value + deltas[pos], &dts)
result[i] = func_create(value, dts, tz, freq)
else:
# pytz
for i in range(n):
value = arr[i]
if value == NPY_NAT:
result[i] = NaT
else:
# Adjust datetime64 timestamp, recompute datetimestruct
pos = trans.searchsorted(value, side='right') - 1
# find right representation of dst etc in pytz timezone
new_tz = tz._tzinfos[tz._transition_info[pos]]
dt64_to_dtstruct(value + deltas[pos], &dts)
result[i] = func_create(value, dts, new_tz, freq)
return result
def _test_parse_iso8601(object ts):
"""
TESTING ONLY: Parse string into Timestamp using iso8601 parser. Used
only for testing, actual construction uses `convert_str_to_tsobject`
"""
cdef:
_TSObject obj
int out_local = 0, out_tzoffset = 0
obj = _TSObject()
if ts == 'now':
return Timestamp.utcnow()
elif ts == 'today':
return Timestamp.now().normalize()
_string_to_dts(ts, &obj.dts, &out_local, &out_tzoffset)
obj.value = dtstruct_to_dt64(&obj.dts)
check_dts_bounds(&obj.dts)
if out_local == 1:
obj.tzinfo = pytz.FixedOffset(out_tzoffset)
obj.value = tz_convert_single(obj.value, obj.tzinfo, UTC)
return Timestamp(obj.value, tz=obj.tzinfo)
else:
return Timestamp(obj.value)
@cython.wraparound(False)
@cython.boundscheck(False)
def format_array_from_datetime(ndarray[int64_t] values, object tz=None,
object format=None, object na_rep=None):
"""
return a np object array of the string formatted values
Parameters
----------
values : a 1-d i8 array
tz : the timezone (or None)
format : optional, default is None
a strftime capable string
na_rep : optional, default is None
a nat format
"""
cdef:
int64_t val, ns, N = len(values)
ndarray[int64_t] consider_values
bint show_ms = 0, show_us = 0, show_ns = 0, basic_format = 0
ndarray[object] result = np.empty(N, dtype=object)
object ts, res
npy_datetimestruct dts
if na_rep is None:
na_rep = 'NaT'
# if we don't have a format nor tz, then choose
# a format based on precision
basic_format = format is None and tz is None
if basic_format:
consider_values = values[values != NPY_NAT]
show_ns = (consider_values % 1000).any()
if not show_ns:
consider_values //= 1000
show_us = (consider_values % 1000).any()
if not show_ms:
consider_values //= 1000
show_ms = (consider_values % 1000).any()
for i in range(N):
val = values[i]
if val == NPY_NAT:
result[i] = na_rep
elif basic_format:
dt64_to_dtstruct(val, &dts)
res = '%d-%.2d-%.2d %.2d:%.2d:%.2d' % (dts.year,
dts.month,
dts.day,
dts.hour,
dts.min,
dts.sec)
if show_ns:
ns = dts.ps / 1000
res += '.%.9d' % (ns + 1000 * dts.us)
elif show_us:
res += '.%.6d' % dts.us
elif show_ms:
res += '.%.3d' % (dts.us /1000)
result[i] = res
else:
ts = Timestamp(val, tz=tz)
if format is None:
result[i] = str(ts)
else:
# invalid format string
# requires dates > 1900
try:
result[i] = ts.strftime(format)
except ValueError:
result[i] = str(ts)
return result
def array_with_unit_to_datetime(ndarray values, object unit,
str errors='coerce'):
"""
convert the ndarray according to the unit
if errors:
- raise: return converted values or raise OutOfBoundsDatetime
if out of range on the conversion or
ValueError for other conversions (e.g. a string)
- ignore: return non-convertible values as the same unit
- coerce: NaT for non-convertibles
"""
cdef:
Py_ssize_t i, j, n=len(values)
int64_t m
ndarray[float64_t] fvalues
ndarray mask
bint is_ignore = errors=='ignore'
bint is_coerce = errors=='coerce'
bint is_raise = errors=='raise'
bint need_to_iterate = True
ndarray[int64_t] iresult
ndarray[object] oresult
assert is_ignore or is_coerce or is_raise
if unit == 'ns':
if issubclass(values.dtype.type, np.integer):
return values.astype('M8[ns]')
return array_to_datetime(values.astype(object), errors=errors)[0]
m = cast_from_unit(None, unit)
if is_raise:
# try a quick conversion to i8
# if we have nulls that are not type-compat
# then need to iterate
try:
iresult = values.astype('i8', casting='same_kind', copy=False)
mask = iresult == NPY_NAT
iresult[mask] = 0
fvalues = iresult.astype('f8') * m
need_to_iterate = False
except:
pass
# check the bounds
if not need_to_iterate:
if ((fvalues < Timestamp.min.value).any()
or (fvalues > Timestamp.max.value).any()):
raise OutOfBoundsDatetime("cannot convert input with unit "
"'{unit}'".format(unit=unit))
result = (iresult * m).astype('M8[ns]')
iresult = result.view('i8')
iresult[mask] = NPY_NAT
return result
result = np.empty(n, dtype='M8[ns]')
iresult = result.view('i8')
try:
for i in range(n):
val = values[i]
if checknull_with_nat(val):
iresult[i] = NPY_NAT
elif is_integer_object(val) or is_float_object(val):
if val != val or val == NPY_NAT:
iresult[i] = NPY_NAT
else:
try:
iresult[i] = cast_from_unit(val, unit)
except OverflowError:
if is_raise:
raise OutOfBoundsDatetime(
"cannot convert input {val} with the unit "
"'{unit}'".format(val=val, unit=unit))
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
elif is_string_object(val):
if len(val) == 0 or val in nat_strings:
iresult[i] = NPY_NAT
else:
try:
iresult[i] = cast_from_unit(float(val), unit)
except ValueError:
if is_raise:
raise ValueError(
"non convertible value {val} with the unit "
"'{unit}'".format(val=val, unit=unit))
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
except:
if is_raise:
raise OutOfBoundsDatetime(
"cannot convert input {val} with the unit "
"'{unit}'".format(val=val, unit=unit))
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
else:
if is_raise:
raise ValueError("unit='{0}' not valid with non-numerical "
"val='{1}'".format(unit, val))
if is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
return result
except AssertionError:
pass
# we have hit an exception
# and are in ignore mode
# redo as object
oresult = np.empty(n, dtype=object)
for i in range(n):
val = values[i]
if checknull_with_nat(val):
oresult[i] = NaT
elif is_integer_object(val) or is_float_object(val):
if val != val or val == NPY_NAT:
oresult[i] = NaT
else:
try:
oresult[i] = Timestamp(cast_from_unit(val, unit))
except:
oresult[i] = val
elif is_string_object(val):
if len(val) == 0 or val in nat_strings:
oresult[i] = NaT
else:
oresult[i] = val
return oresult
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef array_to_datetime(ndarray[object] values, str errors='raise',
bint dayfirst=False, bint yearfirst=False,
object utc=None, bint require_iso8601=False):
"""
Converts a 1D array of date-like values to a numpy array of either:
1) datetime64[ns] data
2) datetime.datetime objects, if OutOfBoundsDatetime or TypeError
is encountered
Also returns a pytz.FixedOffset if an array of strings with the same
timezone offset is passed and utc=True is not passed. Otherwise, None
is returned
Handles datetime.date, datetime.datetime, np.datetime64 objects, numeric,
strings
Parameters
----------
values : ndarray of object
date-like objects to convert
errors : str, default 'raise'
error behavior when parsing
dayfirst : bool, default False
dayfirst parsing behavior when encountering datetime strings
yearfirst : bool, default False
yearfirst parsing behavior when encountering datetime strings
utc : bool, default None
indicator whether the dates should be UTC
require_iso8601 : bool, default False
indicator whether the datetime string should be iso8601
Returns
-------
tuple (ndarray, tzoffset)
"""
cdef:
Py_ssize_t i, n = len(values)
object val, py_dt, tz, tz_out = None
ndarray[int64_t] iresult
ndarray[object] oresult
npy_datetimestruct dts
bint utc_convert = bool(utc)
bint seen_integer = 0
bint seen_string = 0
bint seen_datetime = 0
bint seen_datetime_offset = 0
bint is_raise = errors=='raise'
bint is_ignore = errors=='ignore'
bint is_coerce = errors=='coerce'
bint is_same_offsets
_TSObject _ts
int64_t value
int out_local=0, out_tzoffset=0
float offset_seconds, tz_offset
set out_tzoffset_vals = set()
# specify error conditions
assert is_raise or is_ignore or is_coerce
result = np.empty(n, dtype='M8[ns]')
iresult = result.view('i8')
try:
for i in range(n):
val = values[i]
try:
if checknull_with_nat(val):
iresult[i] = NPY_NAT
elif PyDateTime_Check(val):
seen_datetime = 1
if val.tzinfo is not None:
if utc_convert:
_ts = convert_datetime_to_tsobject(val, None)
iresult[i] = _ts.value
else:
raise ValueError('Tz-aware datetime.datetime '
'cannot be converted to '
'datetime64 unless utc=True')
else:
iresult[i] = pydatetime_to_dt64(val, &dts)
if not PyDateTime_CheckExact(val):
# i.e. a Timestamp object
iresult[i] += val.nanosecond
check_dts_bounds(&dts)
elif PyDate_Check(val):
seen_datetime = 1
iresult[i] = pydate_to_dt64(val, &dts)
check_dts_bounds(&dts)
elif is_datetime64_object(val):
seen_datetime = 1
iresult[i] = get_datetime64_nanos(val)
elif is_integer_object(val) or is_float_object(val):
# these must be ns unit by-definition
seen_integer = 1
if val != val or val == NPY_NAT:
iresult[i] = NPY_NAT
elif is_raise or is_ignore:
iresult[i] = val
else:
# coerce
# we now need to parse this as if unit='ns'
# we can ONLY accept integers at this point
# if we have previously (or in future accept
# datetimes/strings, then we must coerce)
try:
iresult[i] = cast_from_unit(val, 'ns')
except:
iresult[i] = NPY_NAT
elif is_string_object(val):
# string
seen_string = 1
if len(val) == 0 or val in nat_strings:
iresult[i] = NPY_NAT
continue
if isinstance(val, unicode) and PY2:
val = val.encode('utf-8')
try:
_string_to_dts(val, &dts, &out_local, &out_tzoffset)
except ValueError:
# A ValueError at this point is a _parsing_ error
# specifically _not_ OutOfBoundsDatetime
if _parse_today_now(val, &iresult[i]):
continue
elif require_iso8601:
# if requiring iso8601 strings, skip trying
# other formats
if is_coerce:
iresult[i] = NPY_NAT
continue
elif is_raise:
raise ValueError("time data {val} doesn't "
"match format specified"
.format(val=val))
return values, tz_out
try:
py_dt = parse_datetime_string(val,
dayfirst=dayfirst,
yearfirst=yearfirst)
except Exception:
if is_coerce:
iresult[i] = NPY_NAT
continue
raise TypeError("invalid string coercion to "
"datetime")
# If the dateutil parser returned tzinfo, capture it
# to check if all arguments have the same tzinfo
tz = py_dt.utcoffset()
if tz is not None:
seen_datetime_offset = 1
# dateutil timezone objects cannot be hashed, so
# store the UTC offsets in seconds instead
out_tzoffset_vals.add(tz.total_seconds())
else:
# Add a marker for naive string, to track if we are
# parsing mixed naive and aware strings
out_tzoffset_vals.add('naive')
_ts = convert_datetime_to_tsobject(py_dt, None)
iresult[i] = _ts.value
except:
# TODO: What exception are we concerned with here?
if is_coerce:
iresult[i] = NPY_NAT
continue
raise
else:
# No error raised by string_to_dts, pick back up
# where we left off
value = dtstruct_to_dt64(&dts)
if out_local == 1:
seen_datetime_offset = 1
# Store the out_tzoffset in seconds
# since we store the total_seconds of
# dateutil.tz.tzoffset objects
out_tzoffset_vals.add(out_tzoffset * 60.)
tz = pytz.FixedOffset(out_tzoffset)
value = tz_convert_single(value, tz, UTC)
out_local = 0
out_tzoffset = 0
else:
# Add a marker for naive string, to track if we are
# parsing mixed naive and aware strings
out_tzoffset_vals.add('naive')
iresult[i] = value
check_dts_bounds(&dts)
else:
if is_coerce:
iresult[i] = NPY_NAT
else:
raise TypeError("{typ} is not convertible to datetime"
.format(typ=type(val)))
except OutOfBoundsDatetime:
if is_coerce:
iresult[i] = NPY_NAT
continue
elif require_iso8601 and is_string_object(val):
# GH#19382 for just-barely-OutOfBounds falling back to
# dateutil parser will return incorrect result because
# it will ignore nanoseconds
if is_raise:
raise ValueError("time data {val} doesn't "
"match format specified"
.format(val=val))
assert is_ignore
return values, tz_out
raise
except OutOfBoundsDatetime:
if is_raise:
raise
return ignore_errors_out_of_bounds_fallback(values), tz_out
except TypeError:
return array_to_datetime_object(values, is_raise, dayfirst, yearfirst)
if seen_datetime and seen_integer:
# we have mixed datetimes & integers
if is_coerce:
# coerce all of the integers/floats to NaT, preserve
# the datetimes and other convertibles
for i in range(n):
val = values[i]
if is_integer_object(val) or is_float_object(val):
result[i] = NPY_NAT
elif is_raise:
raise ValueError("mixed datetimes and integers in passed array")
else:
return array_to_datetime_object(values, is_raise,
dayfirst, yearfirst)
if seen_datetime_offset and not utc_convert:
# GH#17697
# 1) If all the offsets are equal, return one offset for
# the parsed dates to (maybe) pass to DatetimeIndex
# 2) If the offsets are different, then force the parsing down the
# object path where an array of datetimes
# (with individual dateutil.tzoffsets) are returned
is_same_offsets = len(out_tzoffset_vals) == 1
if not is_same_offsets:
return array_to_datetime_object(values, is_raise,
dayfirst, yearfirst)
else:
tz_offset = out_tzoffset_vals.pop()
tz_out = pytz.FixedOffset(tz_offset / 60.)
return result, tz_out
cdef inline ignore_errors_out_of_bounds_fallback(ndarray[object] values):
"""
Fallback for array_to_datetime if an OutOfBoundsDatetime is raised
and errors == "ignore"
Parameters
----------
values : ndarray[object]
Returns
-------
ndarray[object]
"""
cdef:
Py_ssize_t i, n = len(values)
object val
oresult = np.empty(n, dtype=object)
for i in range(n):
val = values[i]
# set as nan except if its a NaT
if checknull_with_nat(val):
if isinstance(val, float):
oresult[i] = np.nan
else:
oresult[i] = NaT
elif is_datetime64_object(val):
if get_datetime64_value(val) == NPY_NAT:
oresult[i] = NaT
else:
oresult[i] = val.item()
else:
oresult[i] = val
return oresult
@cython.wraparound(False)
@cython.boundscheck(False)
cdef array_to_datetime_object(ndarray[object] values, bint is_raise,
bint dayfirst=False, bint yearfirst=False):
"""
Fall back function for array_to_datetime
Attempts to parse datetime strings with dateutil to return an array
of datetime objects
Parameters
----------
values : ndarray of object
date-like objects to convert
is_raise : bool
error behavior when parsing
dayfirst : bool, default False
dayfirst parsing behavior when encountering datetime strings
yearfirst : bool, default False
yearfirst parsing behavior when encountering datetime strings
Returns
-------
tuple (ndarray, None)
"""
cdef:
Py_ssize_t i, n = len(values)
object val,
ndarray[object] oresult
npy_datetimestruct dts
oresult = np.empty(n, dtype=object)
# We return an object array and only attempt to parse:
# 1) NaT or NaT-like values
# 2) datetime strings, which we return as datetime.datetime
for i in range(n):
val = values[i]
if checknull_with_nat(val):
oresult[i] = val
elif is_string_object(val):
if len(val) == 0 or val in nat_strings:
oresult[i] = 'NaT'
continue
try:
oresult[i] = parse_datetime_string(val, dayfirst=dayfirst,
yearfirst=yearfirst)
pydatetime_to_dt64(oresult[i], &dts)
check_dts_bounds(&dts)
except (ValueError, OverflowError):
if is_raise:
raise
return values, None
else:
if is_raise:
raise
return values, None
return oresult, None
cdef inline bint _parse_today_now(str val, int64_t* iresult):
# We delay this check for as long as possible
# because it catches relatively rare cases
if val == 'now':
# Note: this is *not* the same as Timestamp('now')
iresult[0] = Timestamp.utcnow().value
return True
elif val == 'today':
iresult[0] = Timestamp.today().value
return True
return False