forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_to_timedelta.py
298 lines (252 loc) · 10.3 KB
/
test_to_timedelta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from datetime import (
time,
timedelta,
)
import numpy as np
import pytest
from pandas.errors import OutOfBoundsTimedelta
import pandas as pd
from pandas import (
Series,
TimedeltaIndex,
isna,
to_timedelta,
)
import pandas._testing as tm
from pandas.core.arrays import TimedeltaArray
class TestTimedeltas:
@pytest.mark.parametrize("readonly", [True, False])
def test_to_timedelta_readonly(self, readonly):
# GH#34857
arr = np.array([], dtype=object)
if readonly:
arr.setflags(write=False)
result = to_timedelta(arr)
expected = to_timedelta([])
tm.assert_index_equal(result, expected)
def test_to_timedelta_null(self):
result = to_timedelta(["", ""])
assert isna(result).all()
def test_to_timedelta_same_np_timedelta64(self):
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, "s")]))
expected = pd.Index(np.array([np.timedelta64(1, "s")]))
tm.assert_index_equal(result, expected)
def test_to_timedelta_series(self):
# Series
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
result = to_timedelta(Series(["1d", "1days 00:00:01"]))
tm.assert_series_equal(result, expected)
def test_to_timedelta_units(self):
# with units
result = TimedeltaIndex(
[np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
)
expected = to_timedelta([0, 10], unit="s")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"dtype, unit",
[
["int64", "s"],
["int64", "m"],
["int64", "h"],
["timedelta64[s]", "s"],
["timedelta64[D]", "D"],
],
)
def test_to_timedelta_units_dtypes(self, dtype, unit):
# arrays of various dtypes
arr = np.array([1] * 5, dtype=dtype)
result = to_timedelta(arr, unit=unit)
exp_dtype = "m8[ns]" if dtype == "int64" else "m8[s]"
expected = TimedeltaIndex([np.timedelta64(1, unit)] * 5, dtype=exp_dtype)
tm.assert_index_equal(result, expected)
def test_to_timedelta_oob_non_nano(self):
arr = np.array([pd.NaT._value + 1], dtype="timedelta64[m]")
msg = (
"Cannot convert -9223372036854775807 minutes to "
r"timedelta64\[s\] without overflow"
)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
to_timedelta(arr)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
TimedeltaIndex(arr)
with pytest.raises(OutOfBoundsTimedelta, match=msg):
TimedeltaArray._from_sequence(arr)
@pytest.mark.parametrize(
"arg", [np.arange(10).reshape(2, 5), pd.DataFrame(np.arange(10).reshape(2, 5))]
)
@pytest.mark.parametrize("errors", ["ignore", "raise", "coerce"])
def test_to_timedelta_dataframe(self, arg, errors):
# GH 11776
with pytest.raises(TypeError, match="1-d array"):
to_timedelta(arg, errors=errors)
def test_to_timedelta_invalid_errors(self):
# bad value for errors parameter
msg = "errors must be one of"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo"], errors="never")
@pytest.mark.parametrize("arg", [[1, 2], 1])
def test_to_timedelta_invalid_unit(self, arg):
# these will error
msg = "invalid unit abbreviation: foo"
with pytest.raises(ValueError, match=msg):
to_timedelta(arg, unit="foo")
def test_to_timedelta_time(self):
# time not supported ATM
msg = (
"Value must be Timedelta, string, integer, float, timedelta or convertible"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(time(second=1))
assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
def test_to_timedelta_bad_value(self):
msg = "Could not convert 'foo' to NumPy timedelta"
with pytest.raises(ValueError, match=msg):
to_timedelta(["foo", "bar"])
def test_to_timedelta_bad_value_coerce(self):
tm.assert_index_equal(
TimedeltaIndex([pd.NaT, pd.NaT]),
to_timedelta(["foo", "bar"], errors="coerce"),
)
tm.assert_index_equal(
TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
)
def test_to_timedelta_invalid_errors_ignore(self):
# gh-13613: these should not error because errors='ignore'
invalid_data = "apple"
assert invalid_data == to_timedelta(invalid_data, errors="ignore")
invalid_data = ["apple", "1 days"]
tm.assert_numpy_array_equal(
np.array(invalid_data, dtype=object),
to_timedelta(invalid_data, errors="ignore"),
)
invalid_data = pd.Index(["apple", "1 days"])
tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
invalid_data = Series(["apple", "1 days"])
tm.assert_series_equal(
invalid_data, to_timedelta(invalid_data, errors="ignore")
)
@pytest.mark.parametrize(
"val, errors",
[
("1M", True),
("1 M", True),
("1Y", True),
("1 Y", True),
("1y", True),
("1 y", True),
("1m", False),
("1 m", False),
("1 day", False),
("2day", False),
],
)
def test_unambiguous_timedelta_values(self, val, errors):
# GH36666 Deprecate use of strings denoting units with 'M', 'Y', 'm' or 'y'
# in pd.to_timedelta
msg = "Units 'M', 'Y' and 'y' do not represent unambiguous timedelta"
if errors:
with pytest.raises(ValueError, match=msg):
to_timedelta(val)
else:
# check it doesn't raise
to_timedelta(val)
def test_to_timedelta_via_apply(self):
# GH 5458
expected = Series([np.timedelta64(1, "s")])
result = Series(["00:00:01"]).apply(to_timedelta)
tm.assert_series_equal(result, expected)
result = Series([to_timedelta("00:00:01")])
tm.assert_series_equal(result, expected)
def test_to_timedelta_inference_without_warning(self):
# GH#41731 inference produces a warning in the Series constructor,
# but _not_ in to_timedelta
vals = ["00:00:01", pd.NaT]
with tm.assert_produces_warning(None):
result = to_timedelta(vals)
expected = TimedeltaIndex([pd.Timedelta(seconds=1), pd.NaT])
tm.assert_index_equal(result, expected)
def test_to_timedelta_on_missing_values(self):
# GH5438
timedelta_NaT = np.timedelta64("NaT")
actual = to_timedelta(Series(["00:00:01", np.nan]))
expected = Series(
[np.timedelta64(1000000000, "ns"), timedelta_NaT],
dtype=f"{tm.ENDIAN}m8[ns]",
)
tm.assert_series_equal(actual, expected)
ser = Series(["00:00:01", pd.NaT], dtype="m8[ns]")
actual = to_timedelta(ser)
tm.assert_series_equal(actual, expected)
@pytest.mark.parametrize("val", [np.nan, pd.NaT])
def test_to_timedelta_on_missing_values_scalar(self, val):
actual = to_timedelta(val)
assert actual._value == np.timedelta64("NaT").astype("int64")
def test_to_timedelta_float(self):
# https://github.com/pandas-dev/pandas/issues/25077
arr = np.arange(0, 1, 1e-6)[-10:]
result = to_timedelta(arr, unit="s")
expected_asi8 = np.arange(999990000, 10**9, 1000, dtype="int64")
tm.assert_numpy_array_equal(result.asi8, expected_asi8)
def test_to_timedelta_coerce_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = to_timedelta(arr, unit="ns", errors="coerce")
expected = to_timedelta([1, 2, pd.NaT], unit="ns")
tm.assert_index_equal(result, expected)
def test_to_timedelta_ignore_strings_unit(self):
arr = np.array([1, 2, "error"], dtype=object)
result = to_timedelta(arr, unit="ns", errors="ignore")
tm.assert_numpy_array_equal(result, arr)
@pytest.mark.parametrize(
"expected_val, result_val", [[timedelta(days=2), 2], [None, None]]
)
def test_to_timedelta_nullable_int64_dtype(self, expected_val, result_val):
# GH 35574
expected = Series([timedelta(days=1), expected_val])
result = to_timedelta(Series([1, result_val], dtype="Int64"), unit="days")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
("input", "expected"),
[
("8:53:08.71800000001", "8:53:08.718"),
("8:53:08.718001", "8:53:08.718001"),
("8:53:08.7180000001", "8:53:08.7180000001"),
("-8:53:08.71800000001", "-8:53:08.718"),
("8:53:08.7180000089", "8:53:08.718000008"),
],
)
@pytest.mark.parametrize("func", [pd.Timedelta, to_timedelta])
def test_to_timedelta_precision_over_nanos(self, input, expected, func):
# GH: 36738
expected = pd.Timedelta(expected)
result = func(input)
assert result == expected
def test_to_timedelta_zerodim(self, fixed_now_ts):
# ndarray.item() incorrectly returns int for dt64[ns] and td64[ns]
dt64 = fixed_now_ts.to_datetime64()
arg = np.array(dt64)
msg = (
"Value must be Timedelta, string, integer, float, timedelta "
"or convertible, not datetime64"
)
with pytest.raises(ValueError, match=msg):
to_timedelta(arg)
arg2 = arg.view("m8[ns]")
result = to_timedelta(arg2)
assert isinstance(result, pd.Timedelta)
assert result._value == dt64.view("i8")
def test_to_timedelta_numeric_ea(self, any_numeric_ea_dtype):
# GH#48796
ser = Series([1, pd.NA], dtype=any_numeric_ea_dtype)
result = to_timedelta(ser)
expected = Series([pd.Timedelta(1, unit="ns"), pd.NaT])
tm.assert_series_equal(result, expected)
def test_from_numeric_arrow_dtype(any_numeric_ea_dtype):
# GH 52425
pytest.importorskip("pyarrow")
ser = Series([1, 2], dtype=f"{any_numeric_ea_dtype.lower()}[pyarrow]")
result = to_timedelta(ser)
expected = Series([1, 2], dtype="timedelta64[ns]")
tm.assert_series_equal(result, expected)